
ELECTRONIC STRUCTURE THEORY:

APPLICATIONS AND GEOMETRICAL

ASPECTS

BY SINISA COH

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Physics and Astronomy

Written under the direction of

David Vanderbilt

and approved by

New Brunswick, New Jersey

October, 2011



ABSTRACT OF THE DISSERTATION

Electronic structure theory: Applications and

geometrical aspects

by Sinisa Coh

Dissertation Director: David Vanderbilt

This thesis contains several applications of the first-principles electronic-struc-

ture theory with special emphasis in parts of the thesis on the geometrical aspects

of the theory. We start by reviewing the basics of the first-principles electronic-

structure methods which are then used throughout the thesis. The first appli-

cation of these methods is on the analysis of the stability and lattice dynamics

of α- and β-cristobalite phases of SiO2. We also map the complete low-energy

landscape connecting these two structures and give implications on the phase

transition in this compound. Next we study a family of Pbnm perovskites that

are promising candidates for silicon-compatible high-K dielectrics. We calculate

their structure and dielectric response, and compare with experimental results

where available. The third application of these methods is to the large isosym-

metric reorientation of oxygen octahedra rotation axes in epitaxially strained

perovskites. We explain the origin of the peculiar energy landscape topology as

ii



a function of epitaxial strain. In the part of the thesis devoted to the geomet-

rical aspects of electronic structure theory, we begin by extending the concept

of electronic polarization to a Chern insulators. These insulators are character-

ized by a non-zero off-diagonal σxy conductivity tensor component, quantized in

units of e2/h. Finally we discuss another geometrical quantity, the Chern-Simons

orbital magnetoelectric coupling. We present a first-principles based calculation

of this quantity in several compounds, and motivated by recent developments in

the theory of topological insulators, we speculate about the existence of “large-θ

materials,” in which this kind of coupling could be unusually large.
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Chapter 1

Introduction

Confused. To shake it out of its state of complacency.
I’m afraid I’m not personally qualified to confuse cats,
but I can recommend an extremely good service. Here
is their card.

Episode 5 of Monty Python’s Flying Circus

Electronic structure theory based on the first-principles pseudopotential density-

functional theory lies at the center of the modern theoretical understanding of

materials. By allowing for a direct solution of the fundamental quantum me-

chanical equations on a computer, these methods have made possible, using no

adjustable parameters, the calculation of properties of the materials even before

they are created in the laboratory. This thesis contains several applications of

these electronic-structure methods.

Special attention is given in parts of this thesis to the geometrical aspects of

electronic structure theory. It has been realized only recently that there are some

specific properties of periodic solids that can be calculated from the geometric

(i.e. topological) properties of the electron wave functions themselves. These are

the electronic polarization (in 1993), the anomalous Hall conductivity (in 1999),

and the Chern-Simons orbital magnetoelectric coupling (in 2008).

Chapter 2 introduces some basic methods used throughout the thesis, such as
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the density-functional theory, various pseudopotential methods, and the density-

functional perturbation theory. There is also a discussion of the Berry potential,

Berry curvature, and other geometrical quantities.

The main results of this thesis are presented in Chapters 3 through 7. Specif-

ically, in Chapter 3 we present a study of the structural stability and lattice

dynamics of SiO2 in its α- and β-cristobalite phases. We characterize the low-

lying energy landscape connecting these phases and give possible implications for

the phase-transition mechanism.

In Chapter 4 we compute from first principles the dielectric tensor components

and crystal structures of five classes of perovskites with the Pbnm space group.

This group of materials is believed to be stable in contact with silicon and is

therefore a good candidate for technologically important high-K dielectrics.

The third application of first-principles methods is presented in Chapter 5.

Here we show how bi-axial epitaxial strain can induce anomalously large structural

changes in the perovskites. We present a detailed analysis of the origin of such

structural changes.

In the second part of the thesis we focus on geometrical aspects of electronic

structure theory. In Chapter 6 we discus the extension of the Berry-phase concept

of polarization to a special kind of insulators, namely, to the so called Chern

insulators or the anomalous quantum Hall insulators. This generalization requires

special care because of the partial occupation of chiral edge states.

Finally, in Chapter 7 we present a first-principles based method to calculate

the Chern-Simons orbital magnetoelectric coupling in various materials. Moti-

vated by the recent developments in the connection with the theory of strong Z2

topological insulators, we suggest that, in special cases, this coupling could be as

large or larger than the total magnetoelectric coupling in known magnetoelectrics

like Cr2O3.
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The work in Chapters 3 through 7 is based on Refs. [1, 2, 3, 4, 5] respectively.

We conclude this thesis in Chapter 8.
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Chapter 2

Methods

In this chapter we briefly review some of the concepts used throughout this thesis.

In the first part we give an overview of density-functional theory followed by

a discussion of various pseudopotential techniques, including norm-conserving

pseudopotentials, ultrasoft pseudopotentials, and the projector augmented waves

method. Next we discuss the treatment of relativistic effects in solids, and mention

the density-functional perturbation theory. In the second part of this overview

we discuss the geometrical quantities in the theory of periodic solids, and give

some material properties which can be expressed in terms of these quantities.

2.1 Parameter free method to compute properties

of solids

The quantum mechanical description of interacting electrons and nuclei is given

by the Hamiltonian

H = − ~
2

2me

∑

i

∇2
i −

~
2

2MI

∑

I

∇2
I

+
1

2

∑

i 6=j

e2

|ri − rj|
+
∑

i,I

ZIe
2

|ri −RI |
+

1

2

∑

I 6=J

ZIZJe
2

|RI −RJ |
(2.1)
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where me and MI are electron and ion mass respectively, ZI is the atomic number

of I-th ion, e is the electron charge, and ~ is the reduced Planck constant. Since

ionic masses are much larger than the mass of electron (MI ≫ me) we can treat

the ions as if they are static (Born-Oppenheimer approximation). Therefore we

can discard the ion kinetic energy from Eq. (2.1) and treat the ionic positions RI

as external parameters in the electronic Hamiltonian

H = − ~
2

2me

∑

i

∇2
i +

∑

i

Vext(ri) +
1

2

∑

i 6=j

e2

|ri − rj|
+ Eion. (2.2)

Here

Vext(r) =
∑

I

ZIe
2

|r−RI |
(2.3)

is the external potential created by the ions, and Eion is the constant term arising

from the ion-ion interaction.

2.1.1 Density-functional theory

Density-functional theory provides us an approximate way to solve the many-body

electron problem defined by the Hamiltonian Eq. (2.2). This theory is based on

two theorems proved by Hohenberg and Kohn in Ref. [6] and in a reformulation

of the theory by Kohn and Sham in Ref. [7]. For simplicity here we deal with

the case that the ground state of Hamiltonian Eq. (2.2) is nondegenerate, but the

generalization to the degenerate case exists as well Ref. [8].

We begin by stating first the Hohenberg-Kohn theorem.

Theorem A: There exists a one-to-one map between the external potential

Vext(r) and the ground state electron density n(r).
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Proof. For a given external potential Vext(r) there exists a unique ground-

state wavefunction Ψ and therefore a unique density n(r). Now let us prove that

the ground state density n(r) uniquely determines the external potential Vext.

Let us assume that there exist two external potentials Vext and V ′
ext with the

same ground-state density n(r). Unless Vext and V ′
ext differ by a constant, the

corresponding ground-state wavefunctions Ψ and Ψ′ will be different since they

correspond to different Hamiltonians H and H ′.

By the variational principle we have

〈Ψ|H|Ψ〉 < 〈Ψ′|H|Ψ′〉 (2.4)

since Ψ is a true ground state of H. Therefore we conclude that

E < E ′ + 〈Ψ′|V − V ′|Ψ′〉, (2.5)

E < E ′ +

∫
[V (r) − V ′(r)]n(r)dr. (2.6)

If we started with the variational principle for Ψ′ instead of Ψ, we would have

concluded

E ′ < E +

∫
[V ′(r) − V (r)]n(r)dr. (2.7)

This leads to the contradiction E + E ′ < E + E ′, and therefore it is impossible

that two external potentials result in the same ground-state density.

Next let us state second theorem by Hohenberg and Kohn.

Theorem B: There exists a universal functional F [n] independent of Vext such

that the functional E[n] = F [n] +
∫
Vext(r)n(r)dr + Eion has the following prop-

erties: in the space of all densities n such that
∫
n(r)dr = N , the functional E[n]

has a global minimum at the exact ground state density, and the minimal energy
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is equal to the exact ground-state energy.

Proof. For simplicity we will work with V-representable electron densities,

defined as a density corresponding to the ground-state density of some one-particle

Hamiltonian with some external potential Vext.

Let us define a functional F [n] in the following way. By virtue of previous

theorem, to a given V-representable density n(r) one can assign a ground-state

wavefunction Ψ[n] corresponding to some external potential Vext. Now we define

F [n] as the expectation of the kinetic energy and the electron-electron interaction

energy for that wavefunction Ψ[n]:

F [n] = − ~
2

2me

∑

i

〈Ψ[n]|∇2
i |Ψ[n]〉 +

e2

2

∑

i 6=j

〈Ψ[n]| 1

|ri − rj|
|Ψ[n]〉. (2.8)

From Eq. (2.2) it is clear that ground-state energy corresponding to density n(r)

is

E[n] = F [n] +

∫
Vext(r)n(r)dr + Eion (2.9)

and that this functional is minimized by the exact ground-state density by virtue

of the variational principle.

2.1.2 Kohn-Sham reformulation

Theorem B from the previous section stated that in order to find the exact ground-

state energy and density, one needs to find a minimum of the corresponding

functional given in Eq. (2.9) under appropriate constraints.

Since it is otherwise hard to find useful approximations for the universal func-

tional F [n], one often works with the Kohn-Sham formulation of the variational

problem following theorem B. Let us first consider an auxiliary noninteracting
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N -electron system described by

Haux = − ~
2

2me

∇2 + VKS(r). (2.10)

The single-particle solutions φi(r) of this system satisfy

[
− ~

2

2me

∇2 + VKS(r)

]
φi(r) = ǫiφi(r), (2.11)

and if one solves for theN lowest-energy solutions, then the corresponding ground-

state electron density is given simply by

n(r) =
N∑

i

|φi(r)|2. (2.12)

Even though no rigorous proof exists [9], we will assume that the exact ground-

density can be expressed in terms of Eq. (2.12), i.e., in terms of the density of

some auxiliary non-interacting electron problem.

The key idea of the Kohn-Sham reformulation is to express the density in

Eq. (2.9) in terms of solutions φi of some non-interacting system, and then mini-

mize the energy functional in Eq. (2.9) with respect to the φi. As we are about

to show, the reason for doing this is that this reformulation allows for practical

approximations to the universal functional F [n].

Let us first define the kinetic (TKS) and Hartree (EH) energy of our auxiliary

non-interacting system described by Haux as

TKS[n] = − ~
2

2me

∑

i

〈φi[n]|∇2|φi[n]〉, (2.13)

EH[n] =
e2

2

∫
n(r)n(r′)

|r− r′| drdr
′. (2.14)

Here TKS is a functional of density since theorem A applied to the auxiliary



9

Hamiltonian Haux guarantees that VKS is uniquely given by the ground state

density n(r), and therefore the solutions φi are also given uniquely by the density

n(r).

By adding and subtracting TKS and EH to the energy functional in Eq. (2.9),

we can rewrite it as

E[n] = (TKS[n] − TKS[n] + EH[n] − EH[n]) + F [n] +

∫
Vext(r)n(r)dr + Eion

= TKS[n] + EH[n] +

∫
Vext(r)n(r)dr + Eion + Exc[n] (2.15)

where we have defined the exchange-correlation functional as

Exc[n] = F [n] − TKS[n] − EH[n]. (2.16)

Therefore Exc is defined as the difference between the exact expectation value of

the kinetic energy and electron-electron interaction and the expectation value of

the kinetic energy TKS and Hartree energy EH of the auxiliary system.

By removing the auxiliary kinetic energy TKS and the long-ranged Hartree

energy EH from the functional F [n], we have arrived at a functional Exc which

can be much better approximated than F itself. This is the main reason for the

Kohn-Sham reformulation.

With the help of Eq. (2.12), we have rewritten the density in terms of independent-

electron orbitals φi(r). Therefore, in searching for the minimal value of the energy

functional Eq. (2.15) (or Eq. (2.9)), we can vary over the orbitals φi(r) instead of

the density n(r) itself. The condition that E[n] does not change under variation

of the orbitals φi, or formally that

δE

δφi(r)
= 0 (2.17)
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under constraint 〈φi|φj〉 = δij , leads to the requirement that the orbitals φi need

to satisfy Eq. (2.10) with potential VKS equal to

VKS(r) = Vext(r) + VH(r) + Vxc(r). (2.18)

Here we have defined VH and Vxc as

VH(r) = e2
∫

n(r′)

|r− r′|dr
′, (2.19)

Vxc(r) =
δExc

δn(r)
. (2.20)

In summary, in the Kohn-Sham formulation of the density functional theory,

instead of directly minimizing the energy functional E[n], one has to find the N

lowest-energy solutions of the Kohn-Sham equation

HKSφi(r) =

[
− ~

2

2me

∇2 + Vext(r) + e2
∫

n(r′)

|r− r′|dr
′ + Vxc(r)

]
φi(r) = ǫiφi(r).

(2.21)

The density n(r) corresponding to these orbitals φi(r) (given by Eq. (2.12)) is

then the exact ground state density, and E[n] is the exact ground state energy.

The only unknown functional in Eq. (2.21) is the exchange-correlation potential

Vxc, and in practical calculations one needs to make an appropriate approximation

for Vxc.

In local density approximation (LDA) to the density functional theory one

assumes that Exc is given by

Exc[n] =

∫
n(r)ǫhomxc [n(r)] dr. (2.22)

Here ǫhomxc (n) is the exchange-correlation energy density of a homogeneous electron
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gas with the density n. For function ǫxc one often uses various parametrization

of the results of a very precise Monte-Carlo calculation given in Ref. [10].

It is important to note that eigenfunction and eigenvalues of the Kohn-Sham

Hamiltonian in Eq. (2.21) can not be interpreted as real electron wavefunctions

and eigenenergies. Kohn-Sham orbitals were introduced in Eq. (2.11) only as a

convenient way to parametrize the total electron density and introduce practi-

cal approximation to the exchange-correlation functional Exc[n]. Consistent with

inability to interpret Kohn-Sham eigenenergies as real electron energies, total

electronic energy is not simply given by the sum of occupied Kohn-Sham eigenen-

ergies ǫi from Eq. (2.21), instead one has to evaluate explicitly energy functional

E[n] from Eq. (2.15) for the density n given by Eq. (2.12) through the Kohn-

Sham eigenfunctions. In more convenient form for the numerical calculations,

total electronic energy E can be calculated from the Kohn-Sham eigenenergies

and the ground state density n(r) as

E =
∑

i

ǫi −
e2

2

∫
n(r)n(r′)

|r− r′| drdr
′ + Exc −

∫
Vxc(r)n(r)dr, (2.23)

which can easily be shown by multiplying Eq. (2.21) with φ∗
i (r) from the left and

integrating over the whole space.

Collinear spin density

Density-functional theory as presented so far has been formulated in terms of the

electron density n(r) alone. In some cases it is useful to formulate the theory in

terms of the spin polarized densities n↑(r) and n↓(r), defined as the densities of

the up and down components of spin respectively.

In that case one arrives at the Kohn-Sham equation separately for up and



12

down Kohn-Sham orbitals φiσ(r) with σ denoting the spin index,

[
− ~

2

2me

∇2 + Vext(r) + e2
∫

n(r′)

|r− r′|dr
′ + V σ

xc(r)

]
φiσ(r) = ǫiσφiσ(r). (2.24)

Since the theory is now formulated in terms of both n↑(r) and n↓(r), the exchange-

correlation potential V σ
xc(r) = δExc/δn

σ(r) becomes spin-dependent.

As for the LDA, one can make a local spin density approximation (LSDA) to

the exchange-correlation energy functional

Exc[n↑, n↓] =

∫
n(r)ǫhomxc [n↑(r), n↓(r)] dr (2.25)

where ǫhomxc [n↑(r), n↓(r)] is the energy density of the homogeneous electron gas

with constant spin up and spin down densities n↑ and n↓.

Instead of using spin densities n↑(r) and n↓(r) as variables, one often uses

total electron density n(r) = n↑(r) + n↓(r) and local spin magnetization m(r) =

µe [n↑(r) − n↓(r)], where µe is the magnetic moment of an electron. Now, instead

of using V σ
xc(r) = δExc/δn

σ(r) we can use average exchange-correlation potential

V xc(r) = δExc/δn(r) and effective local magnetic field Bxc(r) = −δExc/δm(r).

With these definitions, Kohn-Sham equations from Eq. (2.24) become,

[
− ~

2

2me

∇2 + Vext(r) + e2
∫

n(r′)

|r− r′|dr
′ + V xc(r) − µeBxc(r)

]
φi↑(r) = ǫi↑φi↑(r),

[
− ~

2

2me

∇2 + Vext(r) + e2
∫

n(r′)

|r− r′|dr
′ + V xc(r) + µeBxc(r)

]
φi↓(r) = ǫi↓φi↓(r).

(2.26)
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Total electronic energy E can now be computed analogously as in the spin un-

polarized case,

E =
∑

i

ǫi −
e2

2

∫
n(r)n(r′)

|r− r′| drdr
′ + Exc −

∫
V xc(r)n(r)dr +

∫
Bxc(r)m(r)dr.

(2.27)

Noncollinear spin density

More generally, one can formulate density-functional theory in terms of the full

spin-density matrix nσσ′(r). The Kohn-Sham equation in this case becomes

{[
− ~

2

2me

∇2 + Vext(r) + e2
∫

n(r′)

|r− r′|dr
′

]
δσσ′ + V σσ′

xc (r)

}
φiσ′(r) = ǫiφiσ(r)

(2.28)

where the exchange-correlation potential V σσ′

xc (r) = δExc/δn
σσ′

(r) can have non-

diagonal components as well and sum over σ′ index is implicit. This functional

is usually constructed by diagonalizing locally at each point r a density matrix

nσσ′(r), and then using the same homogeneous electron gas kernel ǫhomxc [n↑, n↓] as

in Eq. (2.25) for these two diagonal components.

Analogously as in the case of the collinear spin, we can perform a change of

variables from nσσ′(r) to n(r) and m(r) defined as

n(r) = Tr [nσσ′(r)] and m(r) = µe

∑

σ1σ2

σσ1σ2
nσ1σ2

(r), (2.29)

where σ is a vector of three Pauli matrices. Again, we define average exchange-

correlation potential V xc(r) = δExc/δn(r) and effective local magnetic field vector
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Bxc(r) = −δExc/δm(r) and now Kohn-Sham equation Eq. (2.28) reads

{[
− ~

2

2me

∇2 + Vext(r) + e2
∫

n(r′)

|r− r′|dr
′ + V xc(r)

]
δσσ′

− µeBxc(r) · σσσ′

}
φiσ′(r) = ǫiφiσ(r). (2.30)

Total energy in the case of noncollinear calculation can be calculated similarly as

in the collinear case through

E =
∑

i

ǫi −
e2

2

∫
n(r)n(r′)

|r− r′| drdr
′ + Exc −

∫
V xc(r)n(r)dr +

∫
Bxc(r) ·m(r)dr.

(2.31)

2.1.3 Periodic external potential

We will often be interested in solving the Kohn-Sham Eq. (2.21) with a periodic

external potential Vext corresponding to some periodic arrangement of ions RI .

In that case the total potential VKS acting on the Kohn-Sham orbitals will be

periodic as well. For simplicity, in this section we will refer to VKS simply as V (r)

since this analysis will pertain to any periodic external potential.

Here we will review the formulation of Bloch’s theorem, which applies in such

a case.

The periodicity of V (r) in three dimensions is expressed as

V (r + ai) = V (r) (2.32)

for some triplet of vectors ai not in the same plane. (For now we consider only
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three-dimensional crystals; the generalization to d dimensions is trivial.) There-

fore there exists an entire lattice of translation vectors

Rm = m1a1 +m2a2 +m3a3 (2.33)

labeled by a triplet of integer indices m = {m1,m2,m3} which keep V invariant

as in Eq. (2.32). Equivalently, we can say that the translation operators Tm

corresponding to vector Rm commute with Hamiltonian H.

Now let us first formally introduce the concept of the reciprocal vector G as

a vector satisfying

eiG·Rm = 1 (2.34)

for all translation vectors Rm. One can show that the set of all such vectors G

again form a lattice and can all be expressed in the terms of triplet of vectors bi

Gl = l1b1 + l2b2 + l3b3, (2.35)

and integers li. Using Eq. (2.34) one can show that vectors bi can be defined in

terms of vectors ai through the nine relations ai · bj = 2πδij.

Since the set of translation operators Tm corresponding to translation vectors

Rm commute with each other and with the Hamiltonian H, there exists a basis of

eigenstates φi(r) which simultaneously diagonalizes all translation operators Tm

and the Hamiltonian H. Furthermore, it can be shown that these basis functions

can be put in the form

φnk(r) = eik·runk(r) (2.36)
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where unk is a function satisfying the cell-periodicity condition

unk(r + Rm) = unk(r). (2.37)

Here k is an arbitrary 3-vector and n is an integer labeling states with the same

k. This is the well known Bloch theorem.

Since the planewave function exp(iG · r) for any reciprocal vector G is itself a

cell-periodic function, both φnk(r) and φn,k+G(r) can be written in the same form

of eik·r times the cell-periodic function. Therefore we can impose a more strict

form of ansatz Eq. (2.36)

φn,k+G(r) = φnk(r). (2.38)

which gives rise to the following condition

un,k+G(r) = e−iG·runk(r). (2.39)

Therefore given a state labeled by {n,k}, the states at {n,k+G} are redundant

for any reciprocal vector G 6= 0.

Using Eq. (2.36) as an ansatz to the solution of Hamiltonian

[
− ~

2

2me

∇2 + V (r)

]
φnk(r) = ǫnkφnk(r) (2.40)

we arrive at the equation

[
− ~

2

2me

(∇ + ik)2 + V (r)

]
unk(r) = ǫnkunk(r) (2.41)

for unk itself. Therefore the cell-periodic functions unk(r) are not eigenvectors of
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H, but of H(k) defined as

H(k) = − ~
2

2me

(∇ + ik)2 + V (r) = e−ik·rHeik·r. (2.42)

We can think of the set of solutions unk for some chosen range of n as eigenvectors

of a family of Hamiltonians Hk labeled by the continuous variable k. If we further

note that we need to solve these Hamiltonians in the space of periodic functions

satisfying Eq. (2.37), our problem is completely defined.

Since by Eq. (2.39) the eigenfunction unk uniquely determines the eigenfunc-

tion un,k+G, it is enough to consider only one of them in further analysis. By

convention we will only consider the family of Hamiltonians Hk with k restricted

to the parallelepiped spanned by vectors bl. More precisely, we will consider k

vectors from the set

B = {k1b1 + k2b2 + k3b3 | ki ∈ [0, 1]}. (2.43)

Such set of k vectors we refer to as the Brillouin zone.1

We can consider B to have the topology of a 3-torus since the states at ki = 0

and ki = 1 are related by Eq. (2.39). This viewpoint will be important later when

we discuss geometrical aspects of the electronic structure theory in Sec. 2.2.

2.1.4 Pseudopotential theory

In this section we will introduce the concept of pseudopotentials. The natural

setting to develop this formalism is that of an isolated atom with spherical sym-

metry.

First let us consider a Schrodinger equation for some spherical potential V (r)

1Strictly speaking the Brillouin zone is defined as a Wigner-Seitz cell in the reciprocal space.
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written in atomic units as

[
−1

2

d2

dr2
+
l(l + 1)

2r2
+ V (r) − ǫ

]
φl(r) = 0. (2.44)

Here φl(r) is the radial part of the wavefunction related to the full wavefunction

ψ(r) via ψ(r) = (1/r)φl(r)Ylm(θ, φ) where Ylm(θ, φ) is a spherical harmonic. In

the theory of scattering one can show that the wavefunction far away from the

scattering region is given by

lim
|r|→∞

ψ(r, ǫ) = exp(iq · r) + i
exp(iqr)

qr

∑

l

(2l + 1) exp(iηl) sin(ηl)Pl[cos(θ)]

(2.45)

where the first term corresponds to an incoming planewave with momentum q and

energy ǫ = q2/2 (in atomic units) while the second term describes the scattered

wave. All of the dependence on the scattering potential V itself is encoded in the

energy-dependent phase shift ηl(ǫ) for angular channel l. The phase shifts ηl(ǫ)

can be calculated from matching the wavefunction and its first derivative inside

and outside the scattering region.

From Eq. (2.45) it is obvious that the scattering properties at a given energy

ǫ and angular momentum l do not change if the phase shift δl(ǫ) is changed by

an integer multiple of 2π. Therefore if we focus only on a certain energy window

[ǫ1, ǫ2] it is possible to have qualitatively very different scattering potentials V

giving rise to the same (up to 2π) phase shift δl(ǫ) and therefore having the same

scattering properties. This gives us some freedom to tailor the potential V to our

specific needs.

The ionic potential acting on the electrons in Eq. (2.3) consists of a series of

Coulomb potentials which diverge at the ion position as ∼ r−1 when r → 0. The

theory of pseudopotentials, based on the observations above about δl(ǫ), allows
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one to replace the potential from Eq. (2.3) with a much softer potential V̂PS that

can be treated more easily in the numerical calculations.

In what follows we will describe three schemes to replace the Coulomb po-

tential Ze/r of the ion having charge Z with a softer potential having similar

scattering properties in the relevant energy window. In all three cases this pseu-

dopotential can be written in the form

V̂PS = Vloc(r) +
∑

i

Dii′ |βi〉〈βi′ | (2.46)

with an appropriately chosen potential Vloc and orbitals βi that vanish outside

the core region. Even though the operator V̂PS is no longer simply a “potential”,

it is conventional to refer to it as a pseudopotential.

Norm-conserving pseudopotentials

We start by discussing norm-conserving pseudopotentials as first introduced in

Ref. [11]. Norm-conserving pseudpotentials are chosen to satisfy following condi-

tions.

1. For a given atomic configuration, the valence eigenvalues of the true all-

electron potential and the pseudopotential are the same.

2. Outside a chosen core radius rc, the valence eigenfunctions of the true all-

electron potential and the pseudopotential are the same.

3. The total charge of the true all-electron and pseudo eigenfunctions inside

core radius rc are the same.

4. The logarithmic derivative and the energy derivative of the logarithmic

derivative of the true all-electron and pseudo eigenfunctions agree for r > rc.
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The first condition guarantees that for a single atomic configuration, the true

all-electron potential and the pseudopotential will give the same eigenenergies ǫi.

The second condition guarantees that in the bonding region, away from the core,

the wavefunctions match as well.

Furthermore, the equality of energy derivatives given in the fourth condition

requires that the scattering of the pseudopotential and the true all-electron po-

tential match not only at ǫi but also at energies close to ǫi. Since bonding with

neighboring atoms will change the eigenergies away from the atomic energies ǫi,

pseudopotentials satisfying the fourth requirement should give a good description

of the bonding properties.

The third requirement guarantees that the electrostatic potential of the true

all-electron and pseudo wavefunction are the same. Furthermore, the third re-

quirement is equivalent to the equality of energy derivatives given in the fourth

condition due, to the identity

d

dǫ

d

dr
lnφl(R, ǫ) = − 1

φ2
l (R, ǫ)

∫ R

0

φ2
l (r, ǫ)dr (2.47)

which is valid for any solution φl of Eq. (2.44) for arbitrary V (r). Therefore,

if the total charge within some radius rc is the same for two different radial

potentials V (r), then the energy derivatives of the logarithmic derivatives of their

eigenfunctions will be the same.

Now we will describe a procedure for constructing a pseudopotential satisfying

these four constraints.

The first step is to solve the Kohn-Sham equation (2.21) for external potential

Vext given by a potential of a single ion Ze/r in some reference atomic configura-

tion. Due to the spherical symmetry, we can write the Kohn-Sham equation for
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each l-component φl(r) of a wavefunction ψl(r) as

[
−1

2

d2

dr2
+
l(l + 1)

2r2
+
Ze

r
+ VH(r) + Vxc(r)

]
φl(r) = ǫlφl(r). (2.48)

Next one has to divide the set of eigenfunctions φl into core and valence functions.

Our goal is now to construct a pseudotential in form of Eq. (2.46) that will

reproduce the properties of the chosen set of valence functions corresponding to

the four criteria given above.

First, we will construct an operator V̂ PS such that the pseudofunctions φPS
l

satisfying the four criteria above are given as solutions to

[
−1

2

d2

dr2
+
l(l + 1)

2r2
+ V̂ PS + V PS

H (r) + V PS
xc (r)

]
φPS
l (r) = ǫlφ

PS
l (r). (2.49)

Here potentials V PS
H (r) and V PS

xc (r) are ordinary Hartree and exchange-correlation

potentials, but evaluated using the density of the pseudo wavefunctions ψPS
l (r).

We will require the pseudopotential operator V̂ PS to be of the form of Eq. (2.46),

or more specifically, we will require that

V̂ PS = Vloc(r) +
∑

lm

Bl|χlm〉〈χlm|, (2.50)

where l and m are angular momentum indices.

There are various approaches to choosing coefficients Bl and functions χlm.

For example one approach given in Ref. [12] is first to explicitly construct the

solutions φPS
l (r) and local potential Vloc(r) to satisfy the desired four properties.

For r > rc we have to choose pseudofunction φPS
l (r) to be equal to the true all-

electron wavefunction and Vloc has to equal the true all-electron ionic potential.

For r < rc we are then free to choose some smooth functions which satisfy the

necessary criteria.
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Once functions φPS
l (r) and Vloc(r) have been chosen, we can construct the

pseudopotential from Eq. (2.50) by defining

χlm(r) =

{
ǫl −

[
−1

2
∇2 + Vloc(r) + V PS

H (r) + V PS
xc (r)

]}
ψPS
lm(r) (2.51)

and

Bl =
1

〈χlm|ψPS
lm〉 . (2.52)

It is clear from this definition that ψPS
lm is indeed an eigenvector of the Hamiltonian

in Eq. (2.49).

As shown in Ref. [12], more accurate norm-conserving pseudopotentials can

be achieved by generalizing the ansatz of Eq. (2.50) to include multiple projector

functions βlmτ , indexed by (typically two) τ values for a single value of l and m:

V̂ PS = Vloc(r) +
∑

lm

[
∑

ττ ′

Blττ ′ |βlmτ 〉〈βlmτ ′|
]

(2.53)

From here we can proceed in the analogous way as before by constructing pseud-

ofunctions φPS
lτ not only to satisfy the four conditions given above, but also to

satisfy the more general norm-conserving property

∫ rc

0

[φlτ ′(r)]
⋆ φlτ (r)dr =

∫ rc

0

[
φPS
lτ ′ (r)

]⋆
φPS
lτ (r)dr. (2.54)

While it is not obvious, it turns out that this property will guarantee that the

energy derivative will be well reproduced at all energies ǫlτ for all τ . One can
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show that by choosing

Blττ ′ = 〈φPS
lτ |χlmτ ′〉, (2.55)

|βlmτ 〉 =
∑

τ ′

[
B−1

l

]
τ ′τ

|χlmτ ′〉, (2.56)

we have again constructed a pseudopotential operator V̂ PS such that pseudofunc-

tions φPS
lτ are eigenvectors of Hamiltonian in Eq. (2.49).

Ultrasoft pseudopotentials

Now we will describe the construction of ultrasoft pseudopotentials following the

presentation of Ref. [12].

Norm-conserving pseudopotentials were defined by Eq. (2.49), which we will

generalize here to include an overlap operator Ŝ that appears on the right side of

the secular equation

[
−1

2

d2

dr2
+
l(l + 1)

2r2
+ V̂ PS

]
φPS
lτ (r) = ǫlτ Ŝφ

PS
lτ (r), (2.57)

turning this equation into a generalized eigenvalue problem. The index τ here

distinguishes between multiple solutions for the same value of l. Furthermore, we

require the generalized eigenfunctions φPS
lτ to satisfy the generalized orthonormal-

ization condition 〈φPS
lτ |Ŝ|φPS

l′τ ′〉 = δll′δττ ′ .

Denoting indices l,m, τ by the single index i, we will again express the pseu-

dopotential operator as

V̂PS = Vloc(r) +
∑

i

Dij|βi〉〈βj|. (2.58)

Additionally in Eq. (2.57) we have absorbed for a moment the Hartree and

exchange-correlation potentials into Vloc(r).
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Now we will define the operator Ŝ in such a way that the energy derivative

of the logarithmic derivative of the pseudo wavefunction will be reproduced for

an arbitrary choice of the pseudo wavefunctions φPS
i . This is in contrast to the

norm-conserving scheme in which one has to impose constraints on the pseudo

wavefunction (as in Eq. (2.54)) in order to reproduce correctly the energy deriva-

tive. For this reason, in the ultrasoft scheme there is more freedom in choosing

the pseudofunctions φPS
i and therefore they can be chosen to be more smooth

than the norm-conserving ones.

First let us define the matrix Qij to be the difference between the left and

right hand sides of Eq. (2.54). Now we can define the pseudopotential V̂ PS by

Dij = Bij + ǫjQij. (2.59)

and operator Ŝ as

Ŝ = 1 +
∑

ij

Qij|βi〉〈βj|. (2.60)

Here the functions βi and the matrix Bij are defined as in the case of the norm-

conserving pseudopotentials. With this choice of operators Ŝ and V̂ PS, the only

imposed requirement on the pseudofunctions φPS
i is that they match the true

all-electron wavefunctions beyond the cutoff radius.

Additional terms arising from the introduction of operator Ŝ makes ultrasoft

pseudopotential method more complicated than the norm-conserving pseudopo-

tential method. Nevertheless, this reduces the total computational cost. For

further details on this method, please see Ref. [12].
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Projector augmented waves

The projector augmented waves method developed in Ref. [13] is a third way we

will describe which allows one to treat the fast oscillations of valence electrons

near the electron cores.

We start by considering the Hilbert space of all wavefunctions orthogonal to

the core electron wavefunctions. The functions of interest in this space have rapid

oscillations near the core which make them hard to treat numerically. Therefore

we consider another Hilbert space, also referred to as the pseudo Hilbert space,

which contains numerically more easily treated functions without these rapid

oscillations. Additionally we will consider a linear operator T that maps between

these two spaces. With the help of this operator we can do all of our calculations

in the pseudo Hilbert space. If we are interested in, for example, the expectation

of some operator O, one can simply transform the pseudo functions |ψ̃〉 to the real

Hilbert space T |ψ̃〉 and calculate 〈ψ̃|T †OT |ψ̃〉 instead of dealing with 〈ψ|O|ψ〉

directly. We will write the operator T in the form

T = 1 + T0 (2.61)

with T0 acting only in some spherical (augmentation) region around the atom.

Here we will again work in the context of a free isolated atom.

Now let us choose a set of functions |φi〉 and |φ̃i〉 which we will refer to as the

all-electron and pseudo partial waves respectively. Let us assume that the |φi〉

functions are chosen to be orthogonal to the atomic core states, and that both the

|φi〉 and the |φ̃i〉 are complete within the augmentation region – in other words,

that they span the entire (pseudo) Hilbert space. With this assumption, we can
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define the operator T by imposing that

|φi〉 = (1 + T0) |φ̃i〉. (2.62)

An obvious choice for the all-electron partial waves |φi〉 is to take the solutions of

the Schrodinger equation for a single atom. In that case the index i stands for the

radial wavefunction indices {n, l,m}. From the definition in Eq. (2.61) it is clear

that the pseudo partial waves |φ̃i〉 will then have to equal the all-electron partial

waves outside the augmentation region, since T0 acts only inside the augmentation

region.

Since, set of pseudo partial waves |φ̃i〉 is complete in the augmentation region,

every pseudo wavefunction Ψ̃ can be expanded in terms of the pseudo partial

waves as

|Ψ̃〉 =
∑

i

ci|φ̃i〉. (2.63)

This pseudo wavefunction is then mapped by T into

T |Ψ̃〉 = |Ψ〉 =
∑

i

ci|φi〉 (2.64)

where |φi〉 are all-electron partial waves. Therefore we can write the all-electron

wavefunction as

|Ψ〉 = |Ψ̃〉 +
∑

i

[
|φi〉 − |φ̃i〉

]
ci. (2.65)

If we require operator T to be linear, then from Eq. (2.65) it is clear that the

coefficients ci themselves must be linear functionals of |Ψ̃〉. The most general form

of a linear functional is a scalar product with some constant function. We will
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denote this function with 〈p̃i| and refer to it as a projector function. Therefore

we have

ci = 〈p̃i|Ψ̃〉. (2.66)

Since the pseudo partial waves form a complete basis, and expansion in Eq. (2.63)

is unique, it follows that

〈p̃i|φ̃j〉 = δij. (2.67)

The projection operator T now can be compactly written as

T = 1 +
∑

i

[
|φi〉 − |φ̃i〉

]
〈p̃i|. (2.68)

The expectation 〈ψ|O|ψ〉 of any local operator O can be written in terms of

the pseudofunctions 〈ψ̃|Õ|ψ̃〉 where the pseudo operator Õ is defined as

Õ = T †OT

= O +
∑

ij

|p̃i〉
[
〈φi|O|φj〉 − 〈φ̃i|O|φ̃j〉

]
〈p̃j|. (2.69)

Additionally we can choose an arbitrary operator V acting within the core region

and add

V −
∑

ij

|p̃i〉〈φ̃i|V|φ̃j〉〈p̃j| (2.70)

to Eq. (2.69) without changing its expectation value for any pseudo wavefunction.

One can use this freedom in order to remove singularities in the core region for

any operator O. This can, for example, be used to remove the singularity in the
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Coulomb potential of an ion.

In numerical applications, one can now deal with smooth pseudo wavefunc-

tions |ψ̃〉 which can be expanded in a relatively small set of planewaves. All

the integrations involving rapidly varying partial waves can be done on a radial

grid, since these functions can be written as a radial function times a spherical

harmonic.

2.1.5 Relativistic effects in solids

Especially in the case of heavier atoms, relativistic effects in solids can be impor-

tant. One example of such an effect is the spin-orbit interaction. Luckily, these

effects originate mostly from the deep core-level electrons. For this reason, as we

are about to show, it is enough to properly include the relativistic effects only in

the generation of the pseudopotentials.

The generalization of the quantum mechanical description of electrons in

external fields to a relativistically invariant theory leads to the Dirac equation

[14, 15]

{
cα ·

[
p− e

c
A(r)

]
+ V (r) + βmec

2
}
Ψ = i~

∂

∂t
Ψ. (2.71)

Here Ψ is a 4-component wavefunction, A and V are external vector and scalar

potentials acting on the electron, p = −i~∇, while α and β are the 4×4 matrices

αi =

[
0 σi
σi 0

]
β =

[
1 0

0 −1

]
(2.72)

where σi are the Pauli matrices

σ1 =

[
0 1

1 0

]
σ2 =

[
0 −i
i 0

]
σ3 =

[
1 0

0 −1

]
. (2.73)
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The proper description of the electron-electron interaction in a relativistic frame-

work is given by the theory of quantum electrodynamics.

Starting from this relativistic theory including electron-electron interactions,

it was shown in Ref. [16] how one can derive the relativistic version of the density

functional theory formalism and the corresponding relativistic Kohn-Sham equa-

tions. To do so, one has to proceed in a similar manner as for the nonrelativistic

theory, but we will not present that derivation here. Here we will just give the

final form of the relativistic Kohn-Sham equations [16]

{
cα ·

[
p− e

c
ADKS(r)

]
+ VDKS(r) + βmec

2
}
Ψi(r) = EiΨi(r) (2.74)

where the effective potentials ADKS and VDKS are defined as

VDKS(r) = Vext(r) +
e2

c

∫
j0(r′)

|r− r′|dr + ec
δExc[j

µ]

δj0(r)
, (2.75)

ADKS(r) = Aext(r) +
e

c

∫
j(r′)

|r− r′|dr
′ + c

δExc[j
µ]

δj(r)
. (2.76)

The structure of these equations closely resembles that of the Dirac equation

given in Eq. (2.71) for an electron in an effective scalar and vector potential. The

difference with respect to the nonrelativistic theory is that we are not working

here with functionals of density alone, but with functionals of the entire current

density 4-vector jµ = {j0, j}.

Now let us assume that there is no external magnetic field (Aext = 0), and

let us also neglect the retardation part of the Coulomb interaction (Gaunt term)

since it scales as c−2. With these assumptions, we can neglect the first two terms

in ADKS(r). Furthermore, it is often enough to replace the relativistic exchange-

correlation energy Exc[j
µ] with its nonrelativistic form.

With these simplifications, we arrive at the following relativistic generalization
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of the Kohn-Sham equation:

[
cα · p + Vext(r) + e2

∫
n(r′)

|r− r′|dr + Vxc(r) + βmec
2

]
Ψi(r) = EiΨi(r). (2.77)

In order to make this equation look more similar to the nonrelativistic version in

Eq. (2.21), we have defined the electron density in terms of the 4-vector Kohn-

Sham orbitals simply as n(r) =
∑

i

Ψ
†
i (r)Ψi(r). The difference with Eq. (2.21)

is that here the kinetic energy operator is different, the wavefunctions have four

components, and one is supposed to solve only for positive-energy solutions Ei.

For our purposes it will be enough to solve the relativistic equation (2.21) only

for isolated atoms in the process of pseudopotential generation. Therefore, let us

consider the special case of Eq. (2.21) with Vext(r) = Ze2/|r| and let us denote

simply by V the sum of Vext, the Hartree potential, and the exchange-correlation

potential in Eq. (2.77). Therefore one has to solve

(
cα · p + V + βmec

2
)
Ψi(r) = EiΨi(r). (2.78)

In the case of a single ion, the total potential V is spherical, V = V (r). Therefore

we can reduce Eq. (2.78) to a radial equation for each value of the total angular

momentum j and projection m.

We start by choosing an ansatz for Ψi(r) of the form [17]

Ψnjml(r) =




i
1

r
Gnjlφjml

σ · r
r2

Fnjlφjml


 (2.79)

where Gnjl and Fnjl are corresponding large and small radial functions and φjml

are the angular wavefunctions with total angular momentum j, projection m and

angular momentum l. With the help of this ansatz we can cast Eq. (2.78) into
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an equation for radial functions only:

1

~c
(ǫnjl − V )Gnjl(r) = −dFnlj(r)

dr
+
κ

r
Fnlj(r), (2.80)

1

~c

(
ǫnjl + 2mec

2 − V
)
Fnjl(r) = +

dGnlj(r)

dr
+
κ

r
Gnlj(r). (2.81)

Here ǫnjl = Enjl−mec
2 and if j = l+ 1/2, then κ = −(l+ 1) = −(j+ 1/2) , while

if j = l − 1/2, then κ = l = j + 1/2.

Let us now assume that we have solved the set of coupled equations (2.80)

and (2.81) selfconsistently for some atom. This means that we have calculated

the potential V and the radial parts of the wavefunction Gnjl and Fnjl.

For valence electrons the eigenenergy ǫnjl will be much smaller than mec
2

(which is ∼ 5·105 eV). For this reason, and because of the additional 2mec
2 term in

Eq. (2.81), we can conclude that for valence electrons the |Gnjl(r)| component will

be much larger than |Fnjl(r)|. This is not necessarily the case for core electrons

of very heavy ions. Additionally, outside the core region, the potential V (r) will

also be small. Therefore, for the valence electrons outside the core region, we can

use Eq. (2.81) to approximate Fnjl(r) by [18]

Fnjl(r) =
~

2mc

[
dGnlj(r)

dr
+
κ

r
Gnlj(r)

]
+ O(c−2), (2.82)

which is approximately correct up to and including order c−1. Inserting this into

Eq. (2.80) we obtain

− ~
2

2m

[
d2

dr2
− κ(κ+ 1)

r2

]
Gnlj(r) = (ǫnjl − V )Gnjl(r) + O(c−2), (2.83)

which looks just like an ordinary radial Schrodinger equation but with the function

Gnlj(r) replacing the Schrodinger wavefunction.

Therefore, valence electrons outside the core region are well described up to
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order c−1 by the Schrodinger equation (2.83), while for the core electrons we have

to use the fully relativistic equations (2.80) and (2.81). This does not mean that

relativistic effects are not included in equation for the valence electrons, since

the potential V is determined selfconsistently from both the core and the valence

electron densities.

As suggested in Ref. [18], one can now repeat the pseudopotential construction

of Sec. 2.1.4, but for the relativistic potential V and the radial solutions Gnjl(r).

Pseudopotentials constructed in this way will include the relativistic effects of the

core electrons, but they will not require solution of relativistic equations for the

valence (pseudo) electrons.

2.1.6 Density-functional perturbation theory

By solving the Hamiltonian in the Born Oppenheimer approximation given in

Eq. (2.2), one can obtain the total energy of the solid E({RI}) as a function

of the set of ionic positions {RI}. With this information we can also study the

classical dynamics of the ions as determined by the Hamiltonian

HI =
∑

I

1

2
MI

(
∂RI

∂t

)2

+ E({RI}). (2.84)

After expanding E({RI}) around a stationary point and looking for oscillating

solutions, one can arrive at a secular equation

det

∣∣∣∣
1√

MIMJ

∂2E({RI})

∂RI∂RJ

− ω2

∣∣∣∣ = 0 (2.85)

where the ω are the oscillating frequencies.

Among other things, density-functional perturbation theory allows for the ef-

ficient calculation of the second derivatives of the energy appearing in Eq. (2.85),
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and therefore allows one to calculate the ionic lattice (phonon) vibration frequen-

cies ω. An extensive review of density functional perturbation theory can be

found in Ref. [19] and in the original work in Refs. [20, 21, 22].

The energy E({RI}) can be calculated as a ground-state expectation value of

the electronic Hamiltonian given in Eq. (2.2), E({RI}) = 〈Ψ|H|Ψ〉. By explicitly

calculating the second derivative of E({RK}) with respect to the ionic position

RI and RJ , we get

∂2E({RK})

∂RI∂RJ

=

∫
∂n(r)

∂RJ

∂Vext(r)

∂RI

dr +

∫
n(r)

∂2Vext(r)

∂RI∂RJ

dr +
∂2Eion

∂RI∂RJ

. (2.86)

Here Vext(r) is just the ionic potential given by Eq. (2.3), and repeated here for

completeness,

Vext(r) =
∑

I

ZIe
2

|r−RI |
. (2.87)

The only unknown in Eq. (2.86) is the derivative of the ground-state electron

density n(r) with respect to the ionic position RI .

In the Kohn-Sham formulation of the density-functional theory, the ground-

state electron density is given as a sum over the density of the occupied Kohn-

Sham orbitals φi(r). Therefore its derivative with respect to the ionic position

RI is simply

∂RI
n(r) = 2Re

∑

i

φ⋆
i (r)∂RI

φi(r). (2.88)

Here we have introduced the notation ∂RI
to stand for ∂/∂RI .

The variation ∂RI
|φi〉 of the Kohn-Sham orbitals |φi〉 can be obtained by
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standard perturbation theory as

(HKS − ǫi)∂RI
|φi〉 = − (∂RI

VKS − ∂RI
ǫi) |φi〉. (2.89)

Here HKS is the Kohn-Sham Hamiltonian defined in Eq. (2.21) and VKS is the

Kohn-Sham effective Hamiltonian from Eq. (2.18).

The first order change in the Kohn-Sham orbital energy is also given by a

standard result of the perturbation theory,

∂RI
ǫi = 〈φi|∂RI

VKS|φi〉, (2.90)

while the first-order change in VKS can be calculated directly from its definition

as

∂RI
VKS(r) = ∂RI

Vext(r) + e2
∫
∂RI

n(r′)

|r− r′| dr
′ +

dVxc(n)

dn
∂RI

n(r). (2.91)

Equations (2.88), (2.89), (2.90) and (2.91) have to be solved selfconsistently

in a similar manner as the Kohn-Sham equations. From the solution of these

equations one then gets the first-order change in the electron density ∂RI
n(r),

from which the second derivative matrix of the total energy E({RI}) can be

calculated through Eq. (2.86).

2.2 Use of the geometry of the wavefunctions

In this section we will introduce some geometric quantities that can be calculated

from the cell-periodic part unk of the wavefunction of an electron in a periodic

solid.
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2.2.1 Band insulators

For a given value of k, we will assume that the indices n ≥ 1 of the eigenvectors

unk and the eigenvalues ǫnk are assigned in such a way that ǫnk ≤ ǫn+1,k. In the

case of degenerate energies the ambiguity in the assignment of index n will be of

no importance.

We define a band insulator to be a system in which eigenstates unk are occu-

pied for n ≤ N and empty for n > N for some integer N . Let us further also

require that ǫN+1,k is strictly larger than ǫNk. (The conventional definition of

band insulators also assumes that there is an energy E, independent of k, such

that ǫNk < E and ǫN+1,k > E for all k. This distinction will not be important

unless specified otherwise.)

2.2.2 Gauge freedom

The set of occupied states un≤Nk in a band insulator spans a complexN -dimensional

vector space for each point k in the Brillouin zone. We will refer to this vector

space as Lk and it is defined as

Lk = Span (u1k, . . . , uNk) . (2.92)

Therefore we can think of Lk as a family of vector spaces labelled by k. Each of

these spaces is a subspace of the Hilbert space of periodic functions satisfying the

cell-periodicity criterion given in Eq. (2.37).

If we had considered the space spanned by both the occupied and all the

unoccupied states, then this vector space would have been equal to the entire

Hilbert space at each k point. Therefore this family of vector spaces would have

trivial topology of a direct product between the Hilbert space of cell-periodic

functions and Brillouin zone.
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In what follows we will mostly be interested in the vector space Lk and not

in the individual eigenstates of the Hamiltonian themselves. Therefore we do not

need to choose the basis for Lk to be eigenstates unk themselves, but are free to

choose arbitrarily rotated set of states

ũnk =
∑

m

Uk

mnunk (2.93)

with some unitary k-dependent matrix Uk. This freedom of choice of basis we

will refer to as a gauge choice. Often we will refer to the basis vectors in arbitrary

gauge simply as unk, without the tilde symbol.

Matrices Uk have to conserve our convention from Eq. (2.39) and therefore

we need to have

Uk+G = Uk (2.94)

for any vector k and any reciprocal vector G.

2.2.3 Geometric quantities

Now we will define some geometric quantities that we will use later. For a set of

functions unk in an arbitrary gauge, we define the Berry connection, an N × N

matrix of Cartesian 3-vectors, as [23]

Amn,kj = i〈umk|∂j|unk〉 (2.95)

where ∂j is the derivative with respect to the j-th Cartesian component of k.

Next we define the Berry curvature, an N×N matrix of antisymmetric Cartesian
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3 × 3 tensors, as [23]

Fmn,kij = −∂iAmn,kj + ∂jAmn,ki + i[Aki,Akj]mn, (2.96)

where the commutator of N × N matrices is taken. The trace of the Berry

curvature matrix is given by

fkij = trFmn,kij = 2Im
∑

n

〈∂iunk|∂junk〉. (2.97)

Here tr denotes a trace over the occupied states. Finally we define the quantum

metric, a 3 × 3 symmetric Cartesian tensor, as [23]

gkij = Re
∑

n

〈∂iunk|Qk|∂junk〉, (2.98)

where the sum is performed over the set of occupied states n and Qk = 1 − Pk,

where Pk is the projection operator onto the set of occupied states at point k,

i.e.,

Pk =
∑

m

|umk〉〈umk|. (2.99)

The quantum metric tensor and the trace of the Berry curvature can be ex-

pressed as the real and twice the imaginary parts of the same object

∑

n

〈∂iunk|Qk|∂junk〉 (2.100)

due to Eq. 2.97 and 2.98.

The Berry connection Amn,kj, the curvature Fmn,kij, its trace fkij, and the

quantum metric tensor gkij are quantities which depend only on the “geometry”

of the occupied states. For example, Amn,kj is just an N × N matrix which
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measures the relative phase between wavefunctions at two neighboring points in

the Brillouin zone. A similar interpretation can be given to the remaining objects.

2.2.4 Geometric bulk physical quantities

Several important material properties can be evaluated knowing only the geo-

metrical properties of the band structure. These include the electric polarization

(Ref. [24]), the intrinsic anomalous Hall conductivity (Ref. [25, 26, 27]), the Chern-

Simons orbital magnetoelectric coupling (Ref. [28, 29]), the invariant part of the

spread functional (Ref. [30]), and the optical conductivity sum rule (Ref. [31]).

The electric polarization Pel already appears in dimension d = 1, and it can

be evaluated as an integral of the Berry connection over the one-dimensional

Brillouin zone (BZ) as [24]

Pel = − e

2π

∫

BZ

dk trAk, (2.101)

where the trace is performed over the band indices of the Berry connection. The

integrand is also referred to as the Chern-Simons 1-form, and its integral over the

BZ is well known to be defined only modulo 2π. Any periodic adiabatic evolution

of the Hamiltonian H(λ) whose first Chern number in (k, λ) space is non-zero will

change the integral above by a multiple of 2π [24].

Polarization as defined in Eq. 2.101 includes only the contribution of the

electron charges to the polarization. In order to arrive at the total polarization

of a crystal (modulo a quantum), one needs to add to Eq. 2.101 the contribution

from the ionic charges as well. Since ions are usually treated as classical objects,

their polarization can simply be calculated via, Pion = e
∑

I ZIRI . Here eZI is

the charge of the nucleus and RI is its classical position. Total polarization P is
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then given by the sum of these two contributions,

P = Pel + Pion. (2.102)

Unlike one-dimensional systems, crystals in d = 2 can have an anomalous

Hall conductivity. Since this conductivity is strictly off-diagonal, one direction is

needed for the applied electric field and another for the measured current. For

a metal, the intrinsic contribution from a band crossing the Fermi level can be

evaluated as a line integral [25, 26, 27]

σAH =
e2

h

1

2π

∮

FL

dk ·Ak (2.103)

over the Fermi loop (the boundary of the Fermi sea). Fully-filled deeper bands

can also make a quantized contribution given by a similar integral, but around

the entire BZ; this is the only contribution in the case of a quantum anomalous

Hall insulator [32]. In both cases, the gauge choice on the boundary of the region

should be consistent with a continuous, but not necessarily k-periodic, gauge in

its interior; alternatively, each expression can be converted to an area integral of

a Berry curvature to resolve any uncertainty about branch choice, i.e.,

σAH
ij =

e2

h

1

4π2

∫

BZ

d2k trFkij, (2.104)

where the trace is performed over the occupied set of states at each k.

The magnetoelectric coupling tensor αij is defined as

αij =

(
∂Pi

∂Bj

)

E

=

(
∂Mj

∂Ei

)

B

, (2.105)
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where Pi is the electric polarization induced by the magnetic field Bj, or equiva-

lently, Mj is the magnetization induced by the electric field Ei. In the special case

that the induced response (P or M) remains parallel to the applied field (B or

E), the tensor α is purely diagonal with equal diagonal elements, and its strength

can be measured by a dimensionless scalar parameter θ defined via

αiso
ij =

θe2

2πh
δij . (2.106)

Unlike one- or two-dimensional systems, three-dimensional systems can have an

isotropic magnetoelectric coupling. Two directions are needed for the application

of the magnetic field, but then a third direction is needed because the induced

polarization has to be in the direction of the applied magnetic field. The Chern-

Simons orbital magnetoelectric coupling (CSOMP) can be evaluated in d = 3 as

a BZ integration of a quantity involving the Berry connection, namely

θ = − 1

4π

∫

BZ

d3kǫijktr

[
Ai∂jAk −

2i

3
AiAjAk

]
. (2.107)

The integrand in this expression is known as the Chern-Simons 3-form, and its

integral over the entire BZ is again ill-defined modulo 2π, since any periodic

adiabatic evolution of the Hamiltonian H(λ) whose second Chern number in (k, λ)

space is non-zero will change θ by an integer multiple of 2π [28, 29].

The CSOMP is only one part of the magnetoelectric response. The remaining

part of the response involves non-geometric terms which explicitly depend on the

band energy or the Hamiltonian (see Ref. [33, 34] for details).

In four dimensions (d = 4) there exists a generalization of a two-dimensional

quantum anomalous Hall insulator [35, 28]. The response of such an insulator [28]

is characterized by a current density j induced by the electromagnetic potential
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A, given by

jµ =
C2

8π2
ǫµνρστ∂νAρ∂σAτ . (2.108)

This means that, for example, the field configuration

Ax = 0 Ay = Bzx Az = −Ezt Aw = At = 0, (2.109)

corresponding to magnetic and electric fields in direction z will induce a current

jw =
C2

4π2
BzEz (2.110)

along the remaining fourth spatial direction. The integer C2 can be calculated as

an integral over the Brillouin zone via

C2 =
1

32π2

∫

BZ

d4kǫijkltr [FijFkl] . (2.111)

The same quantity could be extended to the d = 4 metallic case, in which case

the integration would be done only over the occupied part of the Brillouin zone.

The same caveats as in the case of anomalous Hall conductivity would apply.

Now we will just briefly mention two remaining quantities which can be calcu-

lated from a knowledge of the quantum metric tensor gkij. One of these quantities

is the invariant part of the spread functional ΩI, which for a three-dimensional

insulator can be calculated as [30]

ΩI =
V

8π3

∫

BZ

d3kTrgk. (2.112)

Here V is the unit cell volume and the trace Tr is performed over the Cartesian

indices of the metric tensor. Finally, the integral of the quantum metric tensor is



42

related to the frequency integral of the optical conductivity σij(ω) as [31]

~

πe2

∫ ∞

0

dω

ω
Reσij(ω) =

1

8π3

∫

BZ

d3kgkij. (2.113)

2.2.5 Topological insulators

Each of the four quantities Eq. (2.101), (2.103), (2.107) and (2.111) gives rise to

one of four kinds of topological insulators. A comprehensive review of topological

insulators is given in Ref. [36], and their complete classification can be found in

Refs. [37, 38, 39, 40].

The dipole moment of a finite d = 1 crystal changes sign under space inversion.

However, the bulk quantity P defined in Eq. 2.102, which is related to the total

dipole moment of a crystal, is well defined only modulo a quantum of charge e.

Therefore, for a system which is inversion symmetric, one needs to have

P = −P mod e. (2.114)

However, there are two distinct values of P which satisfy this equation, namely

P = 0 or P =
e

2
. (2.115)

Of course, each value still can be changed by a quantum e under a gauge trans-

formation.2

An inversion-symmetric insulator having P = 0 cannot be smoothly deformed

into an insulator having P = e/2, and vice versa. In this sense, this is the simplest

example of a topological insulator.

The group associated to this kind of insulator is Z2, because the expression

2Further classification of inversion symmetric insulators is given in Ref. [41].
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for P is additive over bands and it can either be trivial (0) or non-trivial (e/2).

Another example of a topological insulator appears in d = 2 and does not

require any additional symmetry constraints. The integration of the Berry cur-

vature in Eq. (2.104) has to result in an integer. Therefore this integer is a

topological invariant of that insulator, since it cannot change under a smooth

evolution of a Hamiltonian. The group associated to this insulator is Z because

Eq. (2.104) is again additive under addition of bands to the integration. A model

example of this kind of topological insulator was first given in Ref. [32].

The Chern-Simon orbital magnetoelectric coupling, which exists in a d = 3

insulator, will change sign under either time-reversal or space inversion symme-

try. Again, as in the case of polarization, the CSOMP can be changed under a

gauge transformation by 2π. Therefore a system containing any or both of these

symmetries needs to have

θ = −θ mod 2π. (2.116)

which again leads to two possibilities

θ = 0 or θ = π. (2.117)

The group associated to this third kind of topological insulator is Z2.

This kind of topological insulator was first predicted theoretically in Refs. [42,

43, 44] and then also confirmed experimentally in Refs. [45, 46, 47] on various

materials.

Finally, in four dimensions there is an another kind of topological insulator

associated with the integer C2 as defined in Eq. (2.111). This again leads to a

group Z associated with this kind of insulator. Unfortunately, four-dimensional

crystals do not occur in nature.
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Chapter 3

Structural stability and lattice dynamics

of SiO2 cristobalite

Among the phases of SiO2 are α- and β-cristobalites, which have a long and

somewhat controversial history of proposed structural assignments and phase-

transition mechanisms. Recently, Zhang and Scott found new indications that

the higher-temperature β phase has space group I 4̄2d and, by assuming a group-

subgroup relationship between phases, they argued that the lower-temperature α

phase should have lower symmetry than that of the widely-accepted P41212 space

group. With this motivation, we use first-principles calculations to investigate

the energy, structure, and local stability of P41212 and I 4̄2d structures. We also

compute the frequencies of the zone-center phonon modes in both structures, as

well as certain zone-boundary modes in the I 4̄2d structure, and compare with

experiment. We then argue that the various P41212 and I 4̄2d enantiomorphs can

be grouped into three clusters, each of which is identified with a three-dimensional

manifold of structures of P212121 symmetry in which the P41212 and I 4̄2d appear

as higher-symmetry special cases. We find that there are relatively high energy

barriers between manifolds, but low barriers within a manifold. Exploring the

energy landscape within one of these manifolds, we find a minimal-energy path

connecting P41212 and I 4̄2d structures with a surprisingly low barrier of ∼5 meV
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per formula unit. Possible implications for the phase-transition mechanism are

discussed.

3.1 Introduction

The fact that SiO2 can exist in numerous crystalline and amorphous forms, and

its status as one of the most prevalent compounds on earth, has stimulated a

long history of experimental and theoretical investigation. Here we focus on the

α (“low”) and β (“high”) cristobalite phases, which are stable near the melting

temperature and are metastable at room temperature.

The structure of the higher-temperature β phase has a history of contro-

versy. Early indications of a cubic structure with 180◦ bond angles (space group

Fd3̄m) [48] were challenged by others [49, 50] who hypothesized that the true β-

phase structure has lower symmetry and that the apparent cubic structure arises

from averaging over spatial domains or dynamical fluctuations. In particular,

Wright and Leadbetter [50] argued for a tetragonal structure belonging to space

group I 4̄2d (D12
2d). While some subsequent works have provided support for this

identification [51, 52, 53], other authors maintain that it is better to describe

the β phase as a dynamically disordered one having overall Fd3̄m symmetry but

with a large population of rigid-unit-mode (RUM) fluctuations [54, 55]. To some

degree, the argument may be semantic; if the fluctuations have strong short-range

correlations in space and time, it is difficult to distinguish this picture from one of

dynamic domains of a lower-symmetry structure [56]. Thus, for example, either

picture may be able to explain the fact that there are two more first-order lines

in the Raman and infrared spectra than would be expected from Fd3̄m symme-

try [53], and the question of which description is “correct” might depend on the

time and length scales of the experimental probes in question.
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In contrast, the assignment of the α-cristobalite phase to the tetragonal P41212

(D4
4) space group [57] has until recently been noncontroversial. However, based

on a reexamination of Raman and infrared vibrational spectroscopies, Zhang and

Scott [53] have recently raised new questions about the identity of the α phase.

By using Raman spectroscopy to study small single crystals of β-cristobalite,

these authors argued that the β structure must be D2d, not cubic, and assum-

ing a group-subgroup relationship for the β-to-α transition, concluded that the α

phase should have some lower symmetry such as D2 instead of D4. The apparent

D4 symmetry of α-cristobalite could result from spatial or dynamic averaging

over D2 domains, in analogy to what had been proposed for the β phase. To

support their assumption that a group-subgroup relationship should hold, Zhang

and Scott also pointed to the temperature dependence of the optical phonon fre-

quencies near the phase transition as being inconsistent with a reconstructive

phase transition [58] and as suggesting a nearly second-order behavior, although

arguing in the opposite direction are the facts that the latent heat and volume

change at the transition are quite substantial [59].

In their paper, Zhang and Scott [53] reexamined earlier Raman and infrared

spectroscopic measurements not only on the α- and β-cristobalite SiO2 [60], but

also on α and β AlPO4 (Ref. [61]) and α BPO4 (Ref. [62]) cristobalites. Note that

the replacement of Si atoms by Al and P (or B and P) atoms immediately reduces

the symmetry according to P41212 (D4
4) → C2221 (D5

2) for the α phase 1 and

I 4̄2d (D12
2d) → I 4̄ (S2

4) for the β phase. Also of possible relevance is the pressure-

induced phase transition from α-SiO2 to a high-pressure monoclinic cristobalite

phase [63]. The relationship of these other cristobalites to the α and β phases of

SiO2 is an interesting avenue for future exploration, but falls outside the scope of

1Note that this is a different D2 space group than the P212121 (D4

2
) one discussed elsewhere

in this chapter.
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the present work.

First-principles calculations of the structural and lattice dynamical properties

of SiO2 have a long and productive history [64, 65, 52, 66, 67, 68, 69, 70, 71, 72,

73, 74, 75, 76, 77]. While quite a few of these works specifically address the α-

cristobalite structure [64, 65, 71, 73, 70, 66, 77], questions about its stability and

about possible pathways from the α to the β phase have not been fully explored.

In the present work, we have carried out first-principles calculations for candi-

date α and β cristobalite structures in the framework of density-functional theory

(DFT) in order to check the stability of both phases and to explore the energy

landscape connecting them. We have also calculated phonon frequencies and in-

frared activities for both α and β phases, and explored how the phonon modes in

the different phases are related to each other and to those of the high-symmetry

cubic phase. Our calculations are effectively zero-temperature ones, and thus

cannot properly treat the temperature-induced α–β cristobalite phase transition.

Nevertheless we hope that the information obtained from these calculations can

eventually be built into a realistic statistical-mechanical theory that correctly

takes the RUM fluctuations into account in its description of the α and β phases

at experimentally relevant temperatures.

This chapter is organized as follows. In Sec. 3.2 we give a brief review of α

and β cristobalite structures and describe the methods used in the calculations.

Then, in Sec. 3.3, we present the results of our calculations of structural and lattice

vibrational properties of the two phases and of the energy landscape connecting

them. We discuss those results in Sec. 3.4. Finally, we summarize the work in

Section 3.5.
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3.2 Preliminaries

3.2.1 Cristobalite structures

In order to describe the structures of the SiO2 α and β cristobalite phases, it

is easiest to start by considering the “ideal cristobalite” structure, which is con-

structed by placing Si atoms in a diamond structure with oxygen atoms located

midway between each pair of nearest-neighbor Si atoms. This structure has the

space group Fd3̄m (O7
h) and has two formula units per primitive unit cell. Each

Si atom with its four surrounding O atoms forms a tetrahedron, so the whole

structure can be visualized as a network of tetrahedra connected at their apices.

The generally accepted structure of α-cristobalite is arrived at by starting

from the ideal structure and making nearly rigid rotations of the tetrahedra about

[100] and [010] axes (in the original diamond cubic frame), leading to a tetrago-

nal structure with its axis along ẑ. This is illustrated in Fig. 3.1(a), but in the

conventional tetragonal frame, related to the original cubic frame by a 45◦ rota-

tion about ẑ. The tetrahedral rotations are also accompanied by small strains

and tetrahedral translations needed to keep the apices coincident, as would be

expected from enforcement of the rigid-unit constraints. The space group of the

structure is P41212 (D4
4), and since the four rotations shown in Fig. 3.1(a) are all

different, the number of formula units per primitive unit cell is now increased to

four.

As mentioned earlier, diffraction experiments on the β-cristobalite phase tend

to give inconclusive results because of spatial and dynamical averaging. Neverthe-

less, based on the comparison of structure factors predicted by various disorder

models and the ones obtained in their x-ray diffraction experiments, Wright and

Leadbetter [50] concluded that the β-cristobalite has local I 4̄2d (D12
2d) space-group
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Figure 3.1: Projection on x-y plane of the (a) α̃ and (b) β̃ structures, proposed
as candidates for α and β cristobalite phases respectively. Darker shading is
used to represent more distant tetrahedra so that the spiral structure of the
connected tetrahedrons becomes evident; double vertical lines indicate that the
adjoining tetrahedra are actually disconnected because they are separated in the
z-direction.

symmetry. Their proposed structure can also be constructed from the ideal struc-

ture, but this time by rotating all the tetrahedra around the ẑ axis, yielding the

structure shown in 3.1(b). The number of formula units per primitive unit cell re-

mains at two as in the ideal structure (although it can alternatively be described,

as in Fig. 3.1(b), by a doubled conventional cell containing four formula units).

Again, the structure is highly consistent with the rigid-unit constraints.

Because we do not want to presuppose an identification of a particular exper-

imentally observed phase with a particular crystal structure, we henceforth adopt

a notation in which the phases are identified by labels “α” and “β” without tildes,

whereas the putative crystal structures shown in 3.1(a) and (b) will be referred

to as “α̃” and “β̃” structures, respectively. Our working hypothesis is that the

α and β phases have microscopic crystal structures of type α̃ and β̃ respectively,

but we adhere to a distinction in the notation in order to discriminate clearly

between the specified structures used in our calculations and the hypothetical

identification of these with experimental phases.
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3.2.2 Computational methods

The calculations were carried out using the ABINIT implementation [78] of density-

functional theory with Perdew-Burke-Ernzerhof [79] version of the generalized

gradient approximation (GGA) for electron exchange and correlation. Since it

is the smallest unit cell that contains both α̃ and β̃ structures, all calculations

were performed on the four-formula-unit computational cell shown in Fig. 3.1,

even though the primitive cell is smaller in the β̃ structure. The Brillouin zone

was sampled by a 4 × 4 × 4 Monkhorst-Pack grid [80]. Structural properties

were computed using projector augmented-wave [13] potentials converted from

ultrasoft pseudopotentials [12] with a plane-wave cutoff of 22 Ha unless otherwise

specified, while phonon frequencies, eigenvectors, and Born charges were com-

puted [81] using norm-conserving Trouiller-Martins pseudopotentials [82] at an

energy cutoff of 50 Ha (after repeating the structural relaxation using these po-

tentials). The acoustic sum rule was imposed on the force constants, and charge

neutrality was imposed on the Born charges. Throughout the chapter, the sym-

metry analysis associated with crystal space groups has been carried out using

the Bilbao package [83, 84].

3.3 Results

3.3.1 Structural properties of α̃ and β̃ structures

We started our calculations by considering the ideal cubic structure and relaxing

its volume, obtaining ac=7.444 Å for the lattice constant of its eight-formula-unit

cubic cell. Then, working in the frame of the four-formula-unit tetragonal cell, we

found the phonon frequencies at the Γ point of its Brillouin zone, corresponding

to phonons at the Γ point and one X point [namely (2π/ac)(001) or equivalently

(2π/ac)(110) in the cubic frame] of the primitive two-formula-unit fcc cell. For
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Figure 3.2: Ground state energy per formula unit (eV) vs. volume per formula
unit (Å3) for α̃, β̃, and cubic cristobalite structures of SiO2.

the “ideal structure” of space group Fd3̄m, the symmetry decomposition of these

phonons into irreducible representations is

Γ (ideal) = 1A2u ⊕ 1Eu ⊕ 2T1u ⊕ 1T2u ⊕ 1T2g, (3.1)

X (ideal) = 3X1 ⊕ 1X2 ⊕ 2X3 ⊕ 3X4. (3.2)

(The translational T1u mode has been omitted.) The Eu mode and all X modes

are doubly degenerate; the T1u, T2u and T2g modes are triply degenerate; and

A2u is non-degenerate.

We found that the triply-degenerate T2u mode at Γ is unstable with an imag-

inary frequency of i83 cm−1. All other optical phonons have real frequencies,

the lowest being at 250 cm−1. Furthermore, one of the doubly-degenerate (X4)

modes is unstable with a frequency of i53 cm−1. We thus conclude that the ideal

cristobalite structure is unstable with respect to these distortions.

Next we imposed distortions corresponding to these unstable modes and did a

full relaxation of the structure subject to the symmetry constraints of the resulting

space group. The unstable (i53 cm−1) mode at X leads to the space group P41212
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Table 3.1: Lattice constants (in Å) and Wyckoff structural parameters for α̃
(P41212) and β̃ (I 4̄2d) cristobalite SiO2.

Present Previous

theory theory1 Expt.2

α̃-cristobalite

a 5.0730 5.1190 4.9570

c 7.0852 7.1683 6.8903

Si(u) 0.3001 0.2869 0.3047

O(x) 0.2384 0.2439 0.2381

O(y) 0.1081 0.0777 0.1109

O(z) 0.1819 0.1657 0.1826

β̃-cristobalite

a 7.1050 7.226 7.1313

c 7.4061 7.331 7.1313

O(x) 0.1051 0.0896 0.079

(or P43212) which corresponds to α̃-cristobalite, while the (i83 cm−1) mode at

Γ takes us to the space group I 4̄2d of β̃-cristobalite. The energy of the relaxed

ground state as a function of volume per formula unit is shown for both cases

in Fig. 3.2, with the energy of the cubic phase also shown for reference. The

corresponding structural parameters at the energy minimum are given in Table

3.1.

From Fig. 3.2 it is clear that the α̃ and β̃ structures indeed have lower energies

than the ideal cristobalite when the volume becomes smaller than some critical

volume V0 ∼ 55 Å3. (Above this volume, the imposed distortions disappear

during relaxation and the structure returns to the ideal one.) We find that both

the α̃ and β̃ structures have a quite similar dependence of energy on volume.

According to our calculation, the relaxed β̃ structure has a slightly lower energy

than that of the α̃ structure (12 meV per formula unit). This appears to be in

conflict with the experimental situation, since the α phase is experimentally more

stable at lower temperatures. However, when we repeated our calculations using

a local-density approximation (LDA) exchange-correlation functional [85], the β̃



54

structure was found to be lower by 1 meV per formula unit. We thus conclude

that the small energy difference between the two nearly-degenerate structures is

a quantity that is too delicate to be reliably obtained by our DFT calculations.

A similar discrepancy between the results from LDA and GGA functionals was

found in Ref. [70].

Comparison with rigid-unit geometry

We also analyzed what happens to the bond lengths and angles in the α̃ and β̃

structures as a function of volume V . For V < V0, the O–Si–O bond angles and

Si–O bond lengths inside the tetrahedra are found to remain almost constant,

while the Si–O–Si bond angles change by ∼35◦. The details are shown to be

very close to the predictions of a picture of tilting of perfectly rigid tetrahedra.

The fact that the three phases are indistinguishable for V > V0 is also easily

explained, since the tilts of rigid tetrahedra can only decrease the volume of the

ideal structure. Thus, for V > V0 the tetrahedra cannot remain rigid and the

Si–O bond length must increase, and only when V becomes smaller than some

volume V0 will one of the RUMs condense in the structure in order to maintain

the preferred Si–O bond lengths.

In a picture in which the rigid-unit constraints are perfectly enforced, it turns

out that the structures of α̃ and β̃ symmetries are completely determined by

a single parameter, which can be taken to be the volume V per formula unit

relative to the corresponding value V0 in the ideal cubic structure. (That is,

V0 is the volume below which rigid distortions start to appear, as explained in

Sec. 3.3.1.) Now we check to see how closely our structures, as optimized from

the first-principles calculations, match with this elementary model.

The solid curves in Figs. 3.3 and 3.4 show the mathematical predictions of

this elementary model, obtained by applying rotations of types α̃1 and β̃1 (see
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Figure 3.3: Structural parameters of the α̃ structure vs. volume per formula unit.
Top panel: c/a ratio. Bottom panel: absolute values of deviations of internal
parameters u(Si) (squares), x(O) (triangles), y(O) (crosses), and z(O) (circles)
from ideal-cubic values. Symbols represent first-principles calculations; lines are
fits to an ideal rigid-unit geometry.

Fig. 3.5) in such a way as to keep the tetrahedra perfectly rigid. (For V > V0,

the elementary model cannot be satisfied, and the ideal cubic parameters are

plotted instead.) The symbols shown in Figs. 3.3 and 3.4 denote the results of

our first-principles calculations where, for each specified value of V , the volume

was treated as a constraint while all other structural parameters were relaxed.

The fit was optimized by choosing a common V0 = 55.1 Å3 for both α̃ and β̃

structures. For reference, the first-principles equilibrium volumes are 45.7 and

46.7 Å3 for the α̃ and β̃ structures, respectively.

We find that the agreement is extraordinarily good for all of the internal pa-

rameters, but that there are some significant discrepancies in the c/a ratios. At

first sight this may seem contradictory: why are the c/a ratios off by many per-

cent, while the Si-O bond lengths agree within ∼0.05%? The answer is connected

with the presence of volume-preserving tetragonal distortions of low energy cost.

In such a distortion, each tetrahedron is stretched slightly along c and compressed

in a (or vice versa), and it happens that the tetrahedral angle of arccos(1/
√

3) is
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Figure 3.4: Structural parameters of the β̃ structure vs. volume per formula unit.
Top panel: c/a ratio. Bottom panel: x(O). Symbols represent first-principles
calculations; lines are fits to an ideal rigid-unit geometry.

precisely the one at which Si-O bond lengths are preserved to first order in the

distortion amplitude. While the O-Si-O bond angles do change at first order, this

may entail a smaller energy cost than for bond-length changes. As expected from

this analysis, we find that our first-principles O-Si-O bond angles differ from the

ideal ones by ∼4%. In short, it appears that it is energetically more important

to preserve bond lengths than bond angles, and that for geometrical reasons this

translates into an enhanced freedom for the c/a ratio to deviate from the ideal

rigid-unit geometry.

3.3.2 Phonons

Phonons at Γ in α̃-cristobalite

We next repeated the calculation of the phonon frequencies for the fully relaxed α̃

and β̃ cristobalite structures. We did this in order to compare with experimental

measurements and also to check the stability of the structures and to investigate,

at least at harmonic order, the nature of the energy landscape around these

structures. An analysis extending beyond the harmonic approximation will be
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Table 3.2: Infrared-active phonon modes at Γ in α̃-cristobalite (P41212). (E
modes are also Raman-active.) For A2 modes, ωLO refers to a phonon with q̂ = ẑ,
while for E modes ωLO refers to q̂ lying in x-y plane.

Irrep ωTO (cm−1) Z̃λ ωLO (cm−1)

E 127 0.05 128

E 259 0.04 260

A2 285 0.20 293

E 357 0.18 360

E 440 0.74 507

A2 462 0.67 515

E 584 0.23 591

A2 751 0.52 764

E 752 0.02 752

A2 1050 1.52 1201

E 1170 0.17 1165

E 1048 1.55 1208

presented in Sec. 3.3.3.

The decomposition of the optical Γ phonons into irreducible representations

for the α̃ structure in space group P41212 is

Γ (α̃) = 4A1 ⊕ 4A2 ⊕ 5B1 ⊕ 4B2 ⊕ 8E. (3.3)

(The translational A2 and E zero modes have been omitted.) Only the E modes

are doubly degenerate; all others are non-degenerate.

Tables 3.2 and 3.3 present the phonon frequencies at the Γ point for the fully

relaxed α̃-cristobalite structure. All phonon frequencies are positive, although

some appear to be rather low in frequency. For the infrared (IR) active modes

shown in Table 3.2, the transverse mode frequencies were computed initially, and

their mode dynamical charges were also computed using

Z̃
∗

λ,α =
∑

iβ

1√
Mi

ξi,λβZ
∗
i,αβ (3.4)



58

Table 3.3: Raman-only phonon modes at Γ in α̃-cristobalite (P41212).

Irrep ω (cm−1) Irrep ω (cm−1) Irrep ω (cm−1)

B1 29 B1 358 A1 1046

B1 103 A1 378 B1 1049

A1 197 B2 410 B2 1109

B2 275 B1 745

A1 350 B2 750

where ξi,λβ is an eigenvector of the dynamical matrix, Z∗
i,αβ is the Born atomic

charge tensor, and Mi is the mass of the i-th atom in amu. The norms of the

mode-charge vectors Z̃
∗

λ = [
∑

α(Z̃∗
λ,α)2]1/2 are also given in the Table. The longi-

tudinal dynamical matrix was then constructed and diagonalized using standard

methods [81], and the resulting LO mode frequencies are presented in the last

column of Table 3.2. It can be seen that there are wide variations in the mode

dynamical charges, and consequently, large variations in the LO–TO splittings.

Phonons at Γ and M in β̃-cristobalite

Similar calculations of phonon frequencies were also carried out for the β̃ structure

proposed by Wright and Leadbetter [50] for β-cristobalite. Since the primitive cell

of the β̃ structure contains only two formula units while the α̃ structure contains

four, it should be kept in mind that the Γ point of the α̃ structure maps not

only into the Γ point of the β̃ structure, but also into a second point that would

be denoted as X = (2π/ac)(110) in the original fcc frame, or (2π/a)(100) (where

a ≃ ac/
√

2) in the rotated frame of Fig. 3.1; we shall refer to this as the M point in

accordance with the conventional labeling of the body-centered-tetragonal (bct)

primitive cell in the latter frame. The decompositions of the Γ and M phonons



59

Table 3.4: Γ phonons in β̃-cristobalite (I 4̄2d). In italics we show for each phonon
in β̃-cristobalite a closest phonon in α̃-cristobalite (P41212).

Phonon in β̃ structure Closest in α̃ structure

Irrep ω (cm−1) Z̃λ Irrep ω (cm−1)

Infrared and Raman

E 126 0.06 E 127

B2 425 0.79 A2 462

E 444 0.72 E 440

E 748 0.51 E 752

B2 1038 1.56 A2 1050

E 1047 1.52 E 1048

Raman only

A1 289 B1 29

B1 406 A1 350

B1 737 B1 745

Inactive

A2 357 B2 410

A2 1097 B2 1109

Table 3.5: M phonons in β̃-cristobalite (I 4̄2d). In italics we show for each phonon
in β̃-cristobalite a closest phonons in α̃-cristobalite (P41212).

Phonon in β̃ structure Closest in α̃ structure

Irrep ω (cm−1) Irrep ω (cm−1) Irrep ω (cm−1)

M3M4 35 B1 103 A1 197

M5 281 E 259 E 357

M1M2 316 B2 275 A2 285

M3M4 336 B1 358 A1 378

M5 372 E 259 E 357

M5 586 E 584

M1M2 780 B2 750 A2 751

M3M4 1045 A1 1046 B1 1049

M5 1162 E 1170
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Table 3.6: Relations between unstable phonons in “ideal structure” and phonons
in α̃ and β̃ structures.

Ideal α̃-cristobalite β̃-cristobalite

cm−1 cm−1 Irrep cm−1 Irrep

Γ i83 29 B1 289 A1

Γ i83 127 E 126 E

Γ i83 127 E 126 E

X i53 197 A1 35 M3M4

X i53 103 B1 35 M3M4

into irreducible representations for the β̃ structure in space group I 4̄2d are

Γ
(
β̃
)

= 1A1 ⊕ 2A2 ⊕ 2B1 ⊕ 2B2 ⊕ 4E, (3.5)

M
(
β̃
)

= 2M1M2 ⊕ 3M3M4 ⊕ 4M5. (3.6)

(Translational B2 and E zero modes have been omitted.) All M-point modes and

Γ-point E modes are doubly degenerate, while other modes are non-degenerate.

In Tables 3.4 and 3.5 we present the our results for the Γ-point and M-point

phonon modes, respectively, of β̃-cristobalite. The frequencies given for the IR-

active modes at Γ are the transverse ones only. The tables also show the corre-

spondences between the Γ modes in the α̃-cristobalite structure and the Γ and

M modes in the β̃-cristobalite structure, as determined by comparing phonon

eigenvectors.

Relation to unstable phonons in the cubic phase

The triply degenerate Γ-point mode of the cubic structure having imaginary fre-

quency i83 cm−1, which condensed to form the β̃ structure, now has positive

frequencies of 289 cm−1 for the non-degenerate A1 mode and 126 cm−1 for the E

doublet in the β̃ structure. This same triplet corresponds, in the α̃ structure, to

the lowest-frequency phonon of frequency 29 cm−1, which has symmetry B1, and
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to an E doublet at 127 cm−1 having almost the same frequency as in the β̃ struc-

ture. The doubly-degenerate unstable mode of the cubic structure at i53 cm−1,

which condensed to form the α̃ structure, now appears in the α̃ structure at fre-

quencies 197 cm−1 and 103 cm−1 with symmetries A1 and B1, respectively. In the

β̃ structure, on the other hand, the same doublet appears as the lowest-frequency

phonon in that structure, namely the doublet at 35 cm−1 with symmetry M3M4.

These relations between the unstable phonons in the “ideal structure” and the

phonons in α̃ and β̃ structures are shown in Table 3.6.

Comparison with experiment for α-cristobalite

In view of the recent questions that have been posed about the identity of the

α-cristobalite phase [53], we have carried out a more detailed analysis of the

phonons in the α̃ structure. In particular, we have calculated the LO frequencies

of the Γ-point phonons in α̃-cristobalite as a function of the angle at which the

limit q̂ → 0 is taken. It turns out that the labels A2 and E are not well-defined

at arbitrary q̂ because of mixing between modes of these symmetries. Moreover,

it can happen that if one starts with an E mode at q̂ ‖ ẑ and follows the branch

as q̂ is rotated, one arrives at an A2 mode when q̂ lies in the x-y plane, or vice

versa. Experiments have typically been done on powder samples, so that one

should in principle average the phonon spectrum over all possible directions for

q → 0. Moreover, some phonon modes with E symmetry have a very small LO-TO

splitting, so they would most likely appear in experiment as a single line.

For all these reasons, a direct comparison of experimental data with our results

as presented in Tables 3.2 and 3.3 is problematic. Nevertheless, we attempt such

a comparison in Table 3.7. Despite the difficulties, the agreement with experi-

mental data is rather good, with a few exceptions that will be discussed shortly.

We generally underestimate the experimental frequencies by ∼20 cm−1 for lower
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Table 3.7: Left: Computed mode frequencies and irreps for α-cristobalite, with di-
rection of dynamical polarization in parentheses for IR-active modes. The modes
that are adiabatically connected as q̂ is rotated from x̂ to ẑ appear on the same
line. All modes other than A2 modes are Raman-active. Right: Tentative assign-
ments to measured mode frequencies in powder samples.

Present theory Experimental data
q̂ ‖ x̂ q̂ ‖ ẑ IRg Ramanh

cm−1 Irrep cm−1 Irrep Notes cm−1 cm−1 Irrepi Notes
1208 E (x) 1201 A2(z) a,e 1144 A2 c
1170 E (y) 1170 E (y) d 1196 1193 E d
1165 E (x) 1170 E (x) d
1109 B2 1109 B2 d 1188 B2 d
1050 A2(z) 1048 E (x) e
1048 E (y) 1048 E (y) 1100 − E c
1049 B1 1049 B1 d 1086 A1 or B1 d
1046 A1 1046 A1 d 1076 A1 or B1

751 A2(z) 764 A2(z) d 798
752 E (y) 752 E (y) b
752 E (x) 752 E (x) b
750 B2 750 B2 d 796 d
745 B1 745 B1 785 B1

591 E (x) 584 E (x) d
584 E (y) 584 E (y) d 625 − E d
507 E (x) 515 A2(z) a,e
462 A2(z) 440 E (x) e 495 A2 c
440 E (y) 440 E (y) 480 485? E c
410 B2 410 B2 d 426 A1 or B2 d
378 A1 378 A1 d
360 E (x) 357 E (x) d
357 E (y) 357 E (y) d 380 380 E d
358 B1 358 B1 d
350 A1 350 A1 368 A1 or B1

285 A2(z) 293 A2(z) d 300 A2 d
275 B2 275 B2 d 286 B2 d
260 E (x) 259 E (x) d
259 E (y) 259 E (y) d 276 275 E d
197 A1 197 A1 d,f 233 A1 d
128 E (x) 127 E (x) f
127 E (y) 127 E (y) f 147 − E
103 B1 103 B1 d,f 121 B1 d
29 B1 29 B1 f 50 B1

a Not pure LO at all q̂. b LO-TO splitting is negligible. c Part of structured
peak. d Inactive in β phase. e In β̃ structure the A2 component also becomes
Raman active. f Corresponds to RUM mode in ideal cristobalite. g Observation
from [60]. h Observation of 50 cm−1 mode is from [86], all others from [87].
i Empirical assignments from [60].
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frequency phonons and by ∼35 cm−1 for higher frequencies, but otherwise our re-

sults reproduce the experimental pattern of frequencies, and the irrep assignments

are also consistent with those obtained from empirical models [60]. Furthermore,

the identification of the modes that are not expected to be active in the β phase

(fifth and ninth columns of Table 3.7) because they correspond to zone boundary

modes in the β phase (see Table 3.5) or because they are inactive Γ-point modes

(see Table 3.4) agrees well with the results reported in Ref. [60].

The first anomaly is related to the experimentally observed IR mode with a

frequency of 798 cm−1 in the α phase that does not disappear upon transition to

the β phase. Finnie et al. [88] explained this by suggesting that a two-phonon

process in the β phase replaces the fundamental mode of the α phase. Our calcu-

lations identify two almost-degenerate IR modes that are close to this frequency,

an A2 mode at 751 cm−1 and an E mode 752 cm−1. In the α̃ structure both of

these modes are IR active, but the Born charge of the E mode is only 0.02 while

that of A2 is 0.52, which means that the E mode in the α̃ structure is almost

invisible. In the β̃ structure, the A2 mode disappears since it is no longer at Γ.

On the other hand, the E mode remains at the Γ point and its Born charge is

increased to 0.51. These results suggest a possible explanation for the “anomaly,”

namely that there are two IR modes in the α phase; one of them is much weaker

than the other, but upon the transition to the β phase, the stronger one disap-

pears by symmetry while the weaker one greatly increases its IR activity. The

reason why the 752 cm−1 E phonon in the α̃ structure acquires a larger Born

charge upon converting to the β̃ structure is that it gets some admixture of the

440 cm−1 E mode, which has a much larger Born charge (0.74) than that of the

752 cm−1 mode (0.02).

The second anomaly is related to the 1076 cm−1 mode that is still present

upon the transition to the β phase in the form of a fairly broad feature (see Fig.
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1 in Ref. [87]), whereas it would be expected to vanish by symmetry. Swainson

et al. [60] attributed this mode to a possible higher-order process. We think that

it could also be related to the fact that the 1050 cm−1 A2 mode that is Raman

inactive in the α̃-phase becomes Raman active in β̃-phase.

We also predict several phonon modes that are not seen experimentally, such

as the Raman-active modes at 127, 358, 378, 584, 752 and 1048 cm−1. Since

we have not computed Raman matrix elements, it is possible that the Raman

intensities are small for these modes. We also find one weak IR-active mode at

752 cm−1 that is not seen in the experiments.

A very low-frequency phonon at 50 cm−1 has been reported in α cristobalite [89,

86, 90]. We believe this most likely corresponds to the B1 phonon that we have

calculated to appear at 29 cm−1, corresponding closely to the RUM mode that

takes the ideal cubic cristobalite structure into the β̃ structure. The same con-

clusion regarding the lowest-frequency B1 phonon was reached in Ref. [60]. The

minimal-energy path between α and β phases that is related to this low-frequency

phonon is discussed in Sec. 3.3.3.

3.3.3 SiO2 cristobalite stability analysis

As shown in Sec. 3.3.2, all calculated optical phonons in α̃ and β̃ cristobalites

have ω2 > 0, indicating that the relaxed structure is stable with respect to those

modes. In view of the suggestion in Ref. [53] that the α phase might locally have

D2 rather than D4 point-group symmetry, we checked carefully for instabilities

leading from the α̃ structure to D2 structures, but found none. The possible

subgroups of P41212 (D4
4) having D2 symmetry (without reduced translational

symmetry) are C2221 (D5
2) and P212121 (D4

2), and the phonon distortions leading

to these symmetry-lowered structures are the ones of B2 and B1 symmetry re-

spectively. The lowest-frequency mode of B2 symmetry is at 275 cm−1, so there is
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certainly no sign of an instability there. On the other hand, the lowest-frequency

B1 phonon is nearly soft at 29 cm−1, suggesting that the α̃ structure is nearly

unstable to a spontaneous transformation into the P212121 structure. To check

this possibility more carefully, we started from the relaxed α̃ structure and fol-

lowed the distortion corresponding to the 29 cm−1 B1 phonon, and confirmed that

the energy increases monotonically (no double-well structure). Moreover, starting

from one of these structures having a small amount of the 29 cm−1 mode frozen

in, a subsequent relaxation inside the resulting space group P212121 lead to a

recovery of the starting space group P41212. We thus conclude, at least within

our zero-temperature first-principles calculations, that the α̃ structure is locally

stable, i.e., does not spontaneously lower its symmetry to D2.

Nevertheless, the presence of several modes of quite low frequency in the α̃-

cristobalite structure may be suggestive of low-energy pathways leading from the

α̃ to the β̃ structure or between domains of the α̃ structure. For example, we

have shown above that the lowest-frequency 29 cm−1 mode in the α̃-cristobalite

structure corresponds to a phonon of the “ideal structure” that leads to the

β̃ structure, and vice versa. This might suggest that there is a relatively low

energy barrier in the configuration space that connects one structure to the other.

Other phonons from the unstable triplet and doublet in the “ideal structure” have

frequencies that are higher, but still low enough to suggest that there is a low

energy barrier for creation of the domains. In order to clarify these issues, we

shall explore the energy landscape around the α̃ and β̃ structures in more detail

in Sec. 3.3.3. First, however, we begin with a general discussion of RUMs in the

cristobalite phases in the next subsection.
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Figure 3.5: Five linearized RUMs in ideal cristobalite Z=4 structure.

Rigid unit mode analysis

Here we analyze the RUMs present in the high-symmetry cubic structure [91],

but constrained to maintain the periodicity of the four-formula-unit (Z=4) cell

of the α̃-cristobalite structure (i.e., containing two unit cells of the β̃-cristobalite

structure). When these constraints are imposed, we find that there are five lin-

early independent RUM distortions as shown in Fig. 3.5. The first three of these

distortions, which we denote as β̃1, β̃2, and β̃3, consist of tetrahedral rotations

of alternating signs about a single Cartesian axis, and carry the system into the

I 4̄2d symmetry of the β̃ phase. The last two, which we denote as α̃1 and α̃′
1,

consist of a pattern of rotations around the [110] and [11̄0] axes in the frame of

Fig. 3.1, together with small translations of the tetrahedra needed to keep them

connected at their apices, and carry the system into the P41212 (or, for α̃′
1, into

the enantiomorphic P43212) symmetry of the α̃-cristobalite structure. Not shown



67

in Fig. 3.1 are RUM rotations α̃2 and α̃′
2 associated with a second X point, and

α̃3 and α̃′
3 associated with a third X point.

Within the context of an ideal rigid-unit geometry (in which no additional

relaxations are allowed), one can make the following mathematical analysis. The

freezing in of the ideal β̃1 RUM leads to a β̃ structure oriented as in Sec. 3.3.1,

whereas the freezing in of the ideal α̃1 RUM leads to an α̃ structure as in that

section. In the ideal β̃ structure, all five of the modes shown in Fig. 3.5 remain

as true RUMs – i.e., the tetrahedra can remain undistorted to first order in the

mode amplitudes. Thus, all five modes are expected to have low frequencies in

a more realistic description. However, modes α̃2, α̃
′
2, α̃3, and α̃′

3 are no longer

RUMs when a finite β̃1 RUM is present.

In the α̃1 structure, only the α̃1, α̃
′
1, and β̃1 distortions remain as true RUMs.

However, the β̃2 and β̃3 modes at least share the same translational symmetry, and

so may be expected to have somewhat low frequencies. The remaining α̃2, α̃
′
2, α̃3,

and α̃′
3 modes are incompatible both in the RUM sense and in their translational

periodicity [92].

Not surprisingly, when we impose the translational periodicity consistent with

the five modes shown in Fig. 3.1, we confirm that these five distortions correspond

quite closely to the five unstable phonon modes that we found in the ideal struc-

ture. The unstable Γ modes correspond to β̃1, β̃2 and β̃3, while the unstable X

modes correspond to α̃1 and α̃′
1. They also correspond closely to the low-frequency

phonons in the α̃ and β̃ structures as discussed in Sec. 3.3.2.

Extending the mathematical analysis of the compatibility of RUMs, it can be

shown that there is an entire three-dimensional subspace of rigid-unit structures

(i.e., with the tetrahedral rigidity condition satisfied exactly) in which finite rota-

tions of type (α1,α
′
1,β1) are simultaneously present, and having the space group

P212121 that is induced if any two of them are present. In a similar way, there
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are two additional three-dimensional (3D) manifolds (α2,α
′
2,β2) and (α3,α

′
3,β3)

corresponding to different choices of the X point and thus having different Z=4

supercells. The three subspaces meet only at a single point (the cubic phase with

all angles vanishing), and RUMs selected from different 3D manifolds are always

incompatible with each other in the sense that the perfect tetrahedral rigidity can-

not be preserved when imposing both. This picture has important consequences

for our understanding of the possible paths connecting domains of the α̃ and β̃

structures, as discussed below.

Energy landscape inside 3D manifolds

After we have explained the origin of the low-energy phonons in the α̃ and β̃

structures by relating them to RUM modes, we would now like to explore the

energy landscape around these structures. To do so, we begin by finding a con-

figuration space containing both structures. Since there is no group-subgroup

relation between the α̃ and β̃ structures, we seek a maximal common subgroup of

both structures. In the present case, this leads to the space group P212121 (D4
2).

In the P212121 configuration space, the α̃ and β̃ structures represent two

special points, and we know that the energy has local minima at these points

because all computed phonon frequencies were found to be positive there. But

then we also expect that there must be at least one saddle point connecting these

points. To search for this saddle point, we started from the midpoint between the

α̃ and β̃ structures in the 12-dimensional P212121 configuration space (described

by nine internal coordinates and three cell parameters), and identified the unit

vector ê pointing between the two structures. We then applied a simple saddle-

point search strategy in which component of the force vector parallel to ê was

reversed in sign before executing the steepest-descent update. This algorithm

can be expected to succeed if the saddle point is not too far from the midpoint
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Figure 3.6: Energy in plane defined by the α̃ structure (filled circle), β̃ structure
(filled square), and saddle point (cross). Coordinates are chosen such that these
structures occur at (0, 0), (1, 0), and (0.5, 1), respectively. The energy difference
separating contours is 3 meV per SiO2 formula unit.

and if the principal axis of the negative Hessian eigenvalue at the saddle point is

roughly parallel to ê. In the present case, it led to a rapid convergence on the

desired saddle point. Surprisingly, we find that the saddle point has a very low

energy, only 5 meV per formula unit above that of the α̃ structure, or 17 meV

above that of the β̃ structure.

The three points representing the α̃ and β̃ structures and the saddle point

determine a plane in the 12-dimensional configuration space. To confirm that the

path running through the saddle point encounters only a single barrier, we have

plotted the structural energy in this plane (without relaxation of other coordi-

nates) in Fig. 3.6. We have somewhat arbitrarily carried out a linear transforma-

tion on the coordinates in such a way that the α̃ and β̃ structures lie at (0, 0) and

(1, 0) respectively, while the saddle point lies at (0.5, 1), in Fig. 3.6. The results

confirm the picture of a simple barrier of 5 meV encountered when going from

the α̃ to the β̃ structure.

Note that a transformation that would lead from the α̃ to the β̃ structure along

a straight line in configuration space would have an enormously higher barrier
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of 195 meV per formula unit. This is because the straight-line path is a poor

approximation to a RUM. If instead we follow a curved minimum-energy path

from α̃ through the saddle to β̃ and compute the relaxed Si-O bond lengths and

O-Si-O bond angles along this path, we find that these remain almost constant.

This strongly suggests that this minimum-energy path may be well approximated

by some RUM-like distortion.

In the Sec. 3.3.3, we pointed out that within the framework of ideal rigid-unit

rotations, there is an entire three-dimensional subspace of structures for which

the tetrahedral rigidity conditions are satisfied exactly, in which finite rotations

of all three types are present. We label an arbitrary configuration in this 3D

manifold by (α1,α
′
1,β1), where by convention the order of operations is α̃1 followed

by α̃′
1 and then β̃1. The space group at a generic point in this 3D manifold is

P212121, the same one we have just been discussing. It thus seems likely that the

minimum-energy path in Fig. 3.6 may correspond approximately to a path from

the point (α1,0,0) to the point (0,0,β1) and lying, at least approximately, in the

two-dimensional (2D) subspace (α1,0,β1).

To test this conjecture, we first created an ideal rigid-unit structure for each

pair of angles (α1, β1) on a two-dimensional mesh. We then used our first-

principles calculations to relax each structure subject to the constraint that these

two angle variables should not change. Technically, we did this by carrying out

the minimization of the energy in the ten-dimensional subspace orthogonal to the

two-dimensional surface for each starting point (α1, β1). We typically found that

these relaxations were small, confirming the approximate validity of the RUM

picture.

The energy surface determined in this way is plotted as a function of rotation

angles α1 and β1 in Fig. 3.7. The minima corresponding to the α̃ structure

are immediately visible near the left and right sides of the figure, while those
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Figure 3.7: Energy as a function of rotation angles φα1
and φβ1

, corresponding
to rotations α̃1 and β̃1 shown in Fig. 3.5. The origin corresponds to “ideal”
cristobalite. Filled squares at top and bottom denote β̃ minima, filled circles at
left and right denote α̃1 minima, and crosses denote saddle points, as in Fig. 3.6.
The energy difference separating contours is 3 meV per SiO2 formula unit.
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corresponding to the slightly lower-energy β̃ structure appear near the top and

bottom. The minimum-energy path appears to be roughly circular on this plot,

and four equivalent saddle points are apparent at α1 ≃ ±19◦ and β1 ≃ ±13◦.

These saddle points are equivalent to the one identified in Fig. 3.6, with a barrier

height of 5 meV per formula unit relative to the α̃ structure. We thus confirm

the presence of a very low-energy barrier between these structures, and identify

it as approximating a certain path in the space of rigid-unit rotations. A video

animation showing the evolution of the structure along this path is provided in

the supplementary material [93].

It is important to note that, according to the simplified model of Eq. (1) of

Ref. [54], the energy would remain exactly zero on the entire (α1, β1) surface of

Fig. 3.7 since the ideal rigid-unit structures satisfy the rigidity conditions an-

alytically. The RUM framework envisages extensions to make the model more

realistic; one way to do this is by adding an energy term that depends on the

relative tilts of neighboring tetrahedra [94]. We tried this by introducing a sim-

ple double-well potential model that penalizes the departure of the Si-O-Si bond

angles from a preferred bending angle. In this model the change of total energy

per formula unit is

∆E =
E0

N

∑

i

[
−2

(
π − φi

π − φ0

)2

+

(
π − φi

π − φ0

)4
]
, (3.7)

where the sum runs over all N Si-O-Si bond angles φi in the unit cell. We found

that we could obtain an optimal fit 2 to the results of our first-principles calcula-

tions using parameters E0 = 83 meV per formula unit and φ0 = 145◦. The energy

landscape of the fitted model looks very similar to the results plotted in Fig. 3.7.

2The fitting was done to minimize the RMS error of four quantities, namely the equilibrium
angles and the energy difference (relative to the symmetric structure) for the α and β structures.
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Figure 3.8: Energy as a function of rotation angles φα1
and φα′

1
, corresponding

to rotations α̃1 and α̃′
1 shown in Fig. 3.5. The origin corresponds to “ideal”

cristobalite. The four minima (filled circles) correspond to the α̃′
1 structure (top

and bottom) and to the α̃1 structure (left and right). The energy difference
separating contours is 3 meV per SiO2 formula unit.

In particular, the overall circular aspects of the energy landscape and minimal-

energy path in Fig. 3.7 are reproduced. However, the model unfortunately assigns

identical energies to the α̃1 and β̃1 structures, and moreover predicts a path con-

necting them on which the energy remains completely flat. This happens because,

for any given pair of angles (α1,β1) on or near this path, one can find a small α̃′
1

such that the rigid-unit structure (α1,α
′
1,β1) has all its Si-O-Si bond angles exactly

equal to φ0. Therefore our simplified model of Eq. (3.7), or any other model that

depends solely on the Si-O-Si angles, predicts a zero-barrier path between α̃1 and

β̃1 structures. This behavior is reminiscent of an early model of Nieuwenkamp [95]

for β cristobalite, in which the Si-O-Si bond was assumed to rotate freely on an

annulus lying in the plane that is equidistant between Si atoms.
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To further test the model of Eq. (3.7), we performed first-principles calcu-

lations on a mesh of (unrelaxed) structures in the 2D space (α1,α
′
1,β1=0). The

resulting energy landscape is shown in Fig. 3.8. The barrier between α̃1 and α̃′
1

structures is now about 35 meV, substantially higher than for the path connecting

α̃ and β̃ structures. When we use the same fitting parameters obtained earlier,

we again get very good overall agreement; the energy landscape obtained from

our model has the same diamond-like appearance as in Fig. 3.8, and saddle points

appear in very similar locations. Moreover, the barrier of 41 meV predicted by

the model is in quite good agreement with the first-principles value of 35 meV.

However, in this case the picture presented by Fig. 3.8 is somewhat misleading,

because it turns out that the entire minimum-energy path lying in the β1=0 plane

is unstable, and falls to lower energy as β̃1 is turned on. Thus, the apparent sad-

dle points in Fig. 3.8 are actually stationary points with two negative eigenvalues

in the 3D (α1,α
′
1,β1) space. Within the model of Eq. (3.7), in fact, the lowest-

energy path connecting the α̃1 and α̃′
1 structures is actually completely flat, being

composed of a segment connecting α̃1 to β̃1 and then another connecting β̃1 to

α̃′
1. This observation agrees with our first-principles calculations, since if we start

from the purported saddle-point configuration and do a structural relaxation sub-

ject to the constraint that α1 = α′
1, the structure is found to converge to the β̃1

structure as expected.

Cell volume at minima and saddle point

Because we have found the unit-cell parameters to be very sensitive to details

of the calculation, we increased the energy cutoff from 22 Ha to 30 Ha in order

to obtain an accurate description of the volume changes along the minimum-

energy path. We obtain a volume per formula unit of 45.7 and 46.7 Å3 for the

α̃ and β̃ local minima respectively, so that the volume is about 2.2% larger for
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the latter. This is in qualitative agreement with experiments, which show that

the β structure is about 5% larger [96], and implies that applied pressure would

tend to favor the α̃ phase and raise the α-to-β transition temperature. At the

saddle point, we find that the volume per formula unit is 46.8 Å3, which is just

slightly larger than for either of the parent-phase structures. This finding may be

of interest for future studies of the pressure-dependence of the phase-transition

mechanism.

Domain walls

The barriers discussed in Sec. 3.3.3 refer to transformation pathways in which the

crystal remains periodic and transforms homogeneously, and the energy barriers

are given per unit cell. It would also be of interest to consider the energies of

domain walls between various α̃ and β̃ structures. This is beyond the scope of the

present investigation, but the results for homogeneous transformations may give

some hints as to what could be expected. For example, we speculate that domain

walls connecting α̃ and β̃ structures belonging to the same 3D rigid-unit manifold

will probably have a rather low energy per unit area, while those connecting

structures belonging to different 3D manifolds would be expected to have much

higher energies.

3.4 Discussion

In this section we give a brief overview of several previously proposed models of

α and β cristobalite phases, and discuss how the results of our calculations relate

to those models.

The RUM model of Ref. [54] describes the β phase as an average cubic struc-

ture that has strong dynamical fluctuations occurring simultaneously into RUMs
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in all allowed regions of the Brillouin zone. A simplified version of this picture

would be one in which the tetrahedra are assumed to be completely free to pivot

around their apices, as in Eq. (1) of Ref. [54]. In general, the simultaneous ex-

citation of more than one RUM will have an associated energy cost because the

tetrahedra typically cannot remain perfectly rigid while undergoing both kinds

of distortion simultaneously. However, as an exception, we have identified 3D

rigid-unit manifolds within which the geometrical constraints can simultaneously

be satisfied. Within the model of Eq. (1) of Ref. [54], or the split-atom model

of Ref. [97], the energy landscape within this special 3D manifold would be com-

pletely flat, and one would expect that freezing in of one RUM of type α̃1, α̃
′
1 or

β̃1 would have no consequence on the energy profile of one of these other RUM

distortions.

However, once one goes beyond the simplest versions of the model and in-

cludes terms that depend on the Si-O-Si bond angles at the apices, our calcula-

tions indicate that the RUM distortions of type α̃1, α̃
′
1 and β̃1 become coupled

and have a rich energy landscape. As a step in this direction, the more sophis-

ticated split-atom model having an additional energy term depending on Si-O-Si

bond angles [94] should provide an improved description. However, we note that

even this model, or any model based solely on Si-O-Si bond angles, still has a

nonphysical behavior in that it would necessarily predict zero-energy barriers be-

tween the α̃1 and β̃1 structures, as discussed at the end of Sec. 3.3.3. Nevertheless,

we believe that the split-atom and similar models can provide important comple-

mentary information to ours, since they are not restricted to periodic supercell

structures as ours are.

Among the models of cristobalite phase transitions is also the model of Hatch

and Ghose [98]. They argue that the β phase is dynamically and spatially fluc-

tuating between the 12 different possible α̃ domains having P41212 space-group
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α~1

α~1

α~’1

α~’1

β~1

β~1

D4

D2

D2d

Figure 3.9: Sketch of important states in one of the three-dimensional rigid-unit
subspaces discussed in the text. Local energy minima associated with α̃ (D4)
and β̃ (D2d) structures are indicated by filled circles and squares respectively.
Remainder of space, including saddle points (crosses), has D2 symmetry.

symmetry. The counting arises because there are three different X points; each

exhibits a doublet of degenerate modes leading to enantiomorphic α̃1 and α̃′
1 struc-

tures (see Fig. 3.5); and the tetrahedra can rotate by ±φ. The model is based on

symmetry arguments and assumes that all of the barriers separating these 12 α̃

structures are small. However, our work suggests that the barriers separating dif-

ferent types of α̃ domains have very different barriers. Furthermore, their model

does not take into account the fact that the β̃ structure is easily accessible with

a very low barrier, suggesting that fluctuations into the β̃ structure may be more

important than some of the other α̃ structures.

Finally, O’Keeffe and Hyde [51] do discuss a path connecting α̃ and β̃ struc-

tures, but it is of a different type than those discussed above since it connects α̃

and β̃ structures belonging to different 3D rigid-unit manifolds. In our notation,

their path would connect α̃1 or α̃′
1 to β̃2 or β̃3, etc. Such a path would involve

the simultaneous application of RUM rotations that are incompatible with each

other, and as such would be expected to have a high energy barrier.
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To clarify our view of the cristobalite phase transitions, we start by emphasiz-

ing once again the existence of three distinct 3D rigid-unit manifolds, as described

above at the end of Sec. 3.3.3. To review, one of these is described by rotation

angles (α1,α
′
1,β1) giving rise to structures of space group P212121 whose trans-

lational periodicity is that corresponding to the X point (2π/ac)(001) or equiv-

alently (2π/ac)(110). This manifold contains the α̃1, α̃
′
1, and β̃1 structures, and

their partners with reversed sense of rotation, as shown schematically in Fig. 3.9.

The second and third 3D subspaces are described by rotations (α2,α
′
2,β2) and

(α3,α
′
3,β3), with periodicities set by X points (2π/ac)(010) = (2π/ac)(101) and

(2π/ac)(100) = (2π/ac)(011), respectively. We have found that these three sub-

spaces are essentially incompatible, in the sense that it is not possible to combine

rotations taken from any two of them into a combination that preserves the rigid-

unit constraints. This occurs in part because these three 3D rigid-unit subspaces

have incompatible translational symmetries, but also because of incompatibilities

in the patterns of rotations.

The structure of the space sketched in Fig. 3.9 is intended to reflect a three-

level hierarchy of energies and energy barriers as suggested by our analysis. In

the model of Eq. (3.7), the energy is degenerate for all six of the structures shown

in Fig. 3.9, as well as on the solid curves connecting them [93]. According to

our first-principles results, this picture is modified so that the α̃ and β̃ structures

are local minima, with low-energy saddle points (∼5 meV) between them (see

Fig. 3.7). The low curvature of the energy surface along these curves is reflected

in the presence in Table 3.6 of a very soft 29 cm−1 B1 mode starting from the α̃

structure, and a 35 cm−1 M3M4 doublet starting from the β̃ structure 3. While

our calculations have the α̃ structures at a slightly higher energy than the β̃ ones,

3The B1 phonon at 103 cm−1 in the α̃ structure (see Tables 3.3 and 3.6) corresponds to
moving along the dashed curve in Fig. 3.9.
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this is presumably reversed in the true physical system.

The next energy scale in the hierarchy is that associated with the direct paths

between α̃ structures in the same 3D manifold, indicated by the dashed lines in

Fig. 3.9. As shown in Fig. 3.8, this energy is on the order of ∼35 meV, so that

the true minimum-energy path between neighboring α̃ structures goes instead

through (or perhaps nearly through) the β̃ structures.

Finally, the highest energies are associated with the barriers separating any of

the structures in Fig. 3.9 from any of the structures in the other two 3D subspaces.

These barriers are on the order of 80 meV, the energy needed to pass through the

undistorted cubic phase. While not enormously larger than the 35 meV mentioned

above, this is high enough that we do not expect these barriers to be especially

relevant for the phase transitions in this system.

We can now speculate on the nature of the phase transition between α and

β cristobalites. We propose that in the lower-temperature α phase, the system

is locally frozen onto one of the minima of type α̃ in one of the 3D manifolds,

but with substantial fluctuations along the low-energy paths leading to the two

neighboring β̃ structures in the same manifold. Then, in the higher-temperature β

phase, we speculate that the system instead shifts over and condenses locally onto

one of these β̃ structures, but with substantial fluctuations along the low-energy

paths leading to the four neighboring α̃ structures, all in the same 3D manifold.

The fact that there are four low-energy paths to fluctuate along, instead of two,

is consistent with the fact that the β phase (being the higher-temperature phase)

has higher entropy. If the system were truly to freeze onto a single β̃ structure, it

would be globally tetragonal, with space group I 4̄2d. However, it is also possible

that the system forms on some larger scale into spatiotemporal domains composed

of β̃ structures from all three of the 3D manifolds, giving an overall average Fd3̄m

structure in accord with the picture espoused in Refs. [54, 55].
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Let us return for a moment to the recent work of Zhang and Scott [53], who

argued that their Raman studies of single crystals of β-cristobalite were inconsis-

tent with Oh symmetry. Assuming D2d symmetry instead for the β phase, these

authors then noted that D4 is not a subgroup of D2d, and thus that the existence

of a group-subgroup relation for the phase transition would rule out the assign-

ment of the α phase to the D4 α̃ structure. On this basis, they suggested that a

lower symmetry, such as D2, should be considered for α-cristobalite. Our view,

instead, is that a group-subgroup relation does not have to hold for the transition,

since the transition is known to be of first order, and thus assignments of D2d

and D4 for the α and β phases respectively are not inconsistent. As pointed out

in the introduction, while certain spectroscopic signatures of the transition are

indicative of a weakly first-order transition, the volume change and latent heat

at the transition are substantial. The transition may perhaps be described as a

reconstructive transition in the sense of Tolédano and Dmitriev [58], although in

the present case the rearrangements of atoms can occur very gently, because of

the existence of very low-barrier paths of D2 symmetry connecting the D4 (α̃) and

D2d (β̃) structures. The situation may be somewhat analogous to the tetragonal–

to-orthorhombic and orthorhombic-to-rhombohedral transitions in ferroelectric

perovskites such as BaTiO3 and KNbO3, where the presence of low-barrier paths

of monoclinic symmetry is associated with the weakly first-order nature of the

transitions [99].

Unfortunately our calculations are carried out at 0 K with crystal periodicity

imposed. It is therefore difficult to draw any firm conclusions about the nature

of the phase transitions between cristobalite phases, especially if fluctuations are

as important as we think they are, and much of what we have said above must

remain speculative. Nevertheless we hope that the results of our calculations
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will be of use in developing improved models that may allow for realistic finite-

temperature modeling of the phase transitions in this system, ultimately leading

to a resolution of the controversies that have surrounded this system over the

years.

3.5 Summary

Based on first-principles calculations, we have performed a detailed analysis of the

α̃ (P41212) and β̃ (I 4̄2d) structures of cristobalite SiO2. In particular, we have

confirmed that both structures are locally stable against all possible distortions

associated with Γ-point modes of the four-formula-unit conventional cell. We have

calculated phonon frequencies for the α̃ and β̃ structures, compared these to the

experimental values, and discussed how the phonons in these two structures are

related to each other. We have also tried to resolve some experimental anomalies

that were found in spectroscopic studies of the cristobalite phases. Finally, we

have explored the energy landscape connecting the α̃ and β̃ structures. We have

emphasized the existence of three distinct 3D manifolds of structures, each of

which contains both α̃ and β̃ structures that can be connected to each other within

the manifold by paths with a surprisingly small barrier of 5 meV per formula unit,

while paths connecting different manifolds have a much higher barrier. While our

calculations do not properly treat fluctuations, we nevertheless have speculated

on the possible consequences of our findings for the understanding of the α-β

phase transition in cristobalite SiO2.
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Chapter 4

Si-compatible candidates for high-K

dielectrics with the Pbnm perovskite

structure

We analyze theoretically from first-principles the dielectric tensor components

and crystal structure of five classes of Pbnm perovskites. All of these materials

are believed to be stable on silicon and are therefore promising candidates for

high-K dielectrics. We also analyze the structure of these materials with various

simple models, decompose the lattice contribution to the dielectric tensor into

force constant matrix eigenmode contributions, explore a peculiar correlation be-

tween structural and dielectric anisotropies in these compounds and give phonon

frequencies and infrared activities of those modes that are infrared-active. We

find that CaZrO3, SrZrO3, LaHoO3, and LaYO3 are among the most promising

candidates for high-K dielectrics among the compounds we considered. We also

compare our calculations with available experimental data.
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4.1 Introduction

As a result of the ongoing down-scaling of complementary metal-oxide-semiconductor

(CMOS) integrated circuits, the SiO2 gate oxide of field effect transistors is get-

ting thinner and thinner in every new generation of devices [100]. Therefore the

leakage current due to quantum-mechanical tunneling through the dielectric in-

terface is increasing. One way to reduce this current is to replace SiO2 with a

material that has a higher dielectric constant. Such a high-K dielectric layer with

the same effective dielectric thickness (i.e., providing the same capacitance) could

be physically thicker and thus reduce the gate leakage.

In order for this replacement material to be useful in practical applications on

silicon, it also needs to be stable in contact with silicon up to ∼1000 ◦C, and among

other things it must also have an appropriate band alignment with silicon [101,

102, 103]. Currently, a hafnia-based dielectric is used as a replacement to SiO2 in

advanced CMOS transistors in production [104, 105, 106]. There are, however,

drawbacks to this material too, e.g., the limited K that it provides and undesirable

threshold voltage shifts arising from highly mobile oxygen vacancies [107]. This

brings up the natural question: which other materials exist that would satisfy

these requirements and would enable the scaling of MOSFETs to continue beyond

today’s hafnia-based dielectrics?

The stability of single component oxides on silicon has been demonstrated

both experimentally and from thermodynamic analysis [102], and a candidate list

of multicomponent oxide materials has been compiled [101]. A promising group

of these materials consists of perovskite oxides having a Pbnm (or closely related

P21/c) space group. These compounds are at the focus of the present work. Some

of them have been studied in thin-film form [108, 109, 110, 111, 112, 113, 114, 115,

116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126], but the full dielectric tensor of
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Figure 4.1: Photographs of single crystal rare-earth scandates grown along the
[110] direction by the Czochralski method. (a) PrScO3 with a diameter of 12 mm,
(b) NdScO3 with a diameter of 16 mm, (c) SmScO3 with a diameter of 18 mm,
(d) GdScO3 with a diameter of 32 mm, (e) TbScO3 with a diameter of 18 mm,
and (f) DyScO3 with a diameter of 32 mm.

these materials has not yet been established, making the selection of materials best

suited for high-K applications difficult. Some of these materials could also be of

interest for microwave dielectric applications [127, 128]. Thus we decided to study

the structural and dielectric properties of these compounds. The calculations

are carried out using density-functional theory, and we compare the results with

experimental data. To our knowledge, previous theoretical calculations have been

carried out in only a few cases [129, 130, 131].

The chapter is organized as follows. Explanations of theoretical methods

used in this work are given in Sec. 4.2. The main results on the structural and

dielectric properties are given and discussed in Sec. 4.3. There we also discuss the

correlations between the structural and dielectric properties of these perovskites,

decompose the ionic contribution of the dielectric tensor into components arising

from various force constant matrix eigenvectors, and discuss the effect of BA

antisite defects on the dielectric properties. We finish with a brief summary in

Sec. 4.4.
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4.1.1 Compounds under consideration

In this work, we consider the following five groups of perovskites having the Pbnm

space group.

The first group are rare-earth scandates having formula AScO3 where A is

a rare-earth atom. In Sec. 4.3.3 we report full dielectric tensors for LaScO3,

PrScO3, NdScO3, SmScO3, GdScO3, TbScO3 and DyScO3. Note that HoScO3,

ErScO3, TmScO3, YbScO3, LuScO3, and YScO3 do not form single crystals with

the perovskite structure from the melt at atmospheric pressure. Rather, they

form solid solutions of A2O3 and Sc2O3, i.e., (A,Sc)2O3, with the bixbyite struc-

ture [132, 133, 134]. Nevertheless, LuScO3 [126] and YbScO3 [135] have been

formed in perovskite form as thin films via epitaxial stabilization, and others

might be made in the same way. To analyze trends within this group of com-

pounds, we also did the calculations of dielectric tensors on LuScO3 and YScO3

in the Pbnm perovskite structure; see Sec. 4.3.3 for the details.

The second group consists of rare-earth yttrates with formula AYO3. Only one

such compound, LaYO3, is known to form a perovskite [136], but to analyze trends

the dielectric tensor of DyYO3 in the perovskite structure was also calculated.

In the third group we consider CaZrO3, SrZrO3 and SrHfO3 perovskites.

The fourth group of compounds have the formula La2BB
′O6 where the B

atom is either Mg or Ca and B′ is either Zr or Hf. Little is known experimentally

about these compounds, and single crystals of these compounds have not been

made [137].

The last group of compounds we considered have the formula AA’O3, where

both A and A’ are rare-earth atoms. These include the 11 of such compounds that

are known to form the perovskite structure with space group Pbnm at atmospheric

pressure: LaHoO3, LaErO3, LaTmO3, LaYbO3, LaLuO3, CeTmO3, CeYbO3,



86

CeLuO3, PrYbO3, PrLuO3, and NdLuO3 [136, 138, 139]. We calculated the

dielectric and structural properties of all of these compounds.

4.2 Preliminaries

4.2.1 Structure of Pbnm perovskites

The ideal cubic perovskite ABO3 consists of a network of corner-shared octahedra,

each with an oxygen on its vertices and a B atom at its center, and A ions

that are 12-fold coordinated in the spaces between octahedra. It is well known

that perovskites having sufficiently small A-site ions (i.e., a small Goldschmidt

tolerance factor [140, 141]) often allow for a distorted perovskite structure that has

a rotated framework of oxygen octahedra and displaced A-site ions. This lowers

the space group symmetry from cubic Pm3̄m (O1
h) to orthorhombic Pbnm (D16

2h),

and the number of ABO3 formula units per primitive cell increases from Z = 1

to Z = 4, as shown in Fig. 4.2. The rotations of the octahedra in the Pbnm

space group can be decomposed into two steps. The first step is the rotation

around the [110] direction of the original cubic frame (the cubic frame is rotated

by 45◦ around the z axis with respect to the Pbnm frame) by an angle θR as in

Fig. 4.3(a), and the second step is a rotation around [001] by θM as in Fig. 4.3(b).

The rotations must be done in that order to prevent distortions of the octahedra.

The pattern of neighboring octahedral rotations is denoted by (a−a−c+) in Glazer

notation [142] (or see the directions of the arrows in Fig. 4.3). These rotations

also allow for the displacement of A-site ions in the x-y plane without further

lowering of the space-group symmetry.
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Figure 4.2: 20-atom primitive cell of a Pbnm-distorted ABO3 perovskite. A-site
atoms are shown in black, B-site atoms in blue (at the centers of the octahedra)
and oxygen atoms in red (at the vertices of the octahedra). Orthorhombic unit
cell vectors (a, b, and c) are also indicated.

Figure 4.3: (a) Projection on the a-c plane of the structure with θR > 0 and
θM = 0. (b) Projection on the a-b plane for θR = 0 and θM > 0. Color coding of
atoms and positions of axes labels are the same as in Fig. 4.2. In (a), a darker
shading is used to indicate the two octahedra that are further away along the
y-coordinate; in (b), the two bottom octahedra are exactly below the two top
octahedra.
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4.2.2 Computational methods

The main computational method we are using is the density-functional theory as

implemented in the Quantum-Espresso package [143]. The exchange-correlation

functional was approximated using a generalized gradient approximation (GGA)

of the Perdew-Burke-Ernzerhof type [79] and ultrasoft pseudopotentials were em-

ployed [12]. The electronic wavefunctions were expanded in a basis of plane waves

with kinetic energy up to 40 Ry, while the charge density was expanded up to

300 Ry. The Brillouin zone was sampled using a 4 × 4 × 4 Monkhorst-Pack

grid [80].

A new set of ultrasoft pseudopotentials [12] for the lanthanoide series of rare

earths, from La to Lu, were generated for the present project. In all cases the f -

shell filling was chosen as appropriate for the 3+ valence state: one f electron for

Ce, two for Pr, etc. The f electrons were then considered to be in the core (and

un-spin-polarized) for the proposes of generating the pseudopotentials. Thus, the

f electrons are not explicitly included in the solid-state calculations. Such an

approximation can be justified whenever the strong on-site Coulomb interactions

of electrons in the f shell drive the occupied f states well below, and the un-

occupied states well above, the energy range of interest for spd bonding in the

crystal. Of course, this will not be a good approximation for some heavy-fermion

or mixed-valent systems, and in any case our approach is obviously unable to de-

scribe phenomena involving magnetic ordering of f electrons at low temperature.

Nevertheless, we believe that this approach is quite reasonable for the present

purposes.

The artificial nature of the scattering in the f channel did, however, pose

some problems in the pseudopotential construction. In particular, we found that

the lattice constant of a perovskite containing the rare-earth atom in question

could differ for two pseudopotentials having different scattering properties in the
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f channel; this causes problems since the usual approach of matching to the all-

electron f scattering is not appropriate in the present case. To ameliorate this

problem, the f -channel parameters of these pseudopotentials were optimized so

that resulting pseudopotentials would give the “correct” cell volumes for simple

rare-earth compounds. Since the GGA typically overestimates crystal volumes

by about 1-2% [144], the optimization was actually done in order to produce a

corresponding overestimate in a consistent fashion.

For this procedure, our compounds of choice were the rare-earth nitrides with

the simple rock-salt structure. The experimental [145] and calculated volumes of

these nitrides are indicated in Fig. 4.4. Note that the volumes of CeN, PrN, and

GdN show an anomalous behavior that is presumably due to strong correlation

effects associated with the proximity to a mixed-valent regime 1, and therefore

they will not be correctly treated by our GGA calculation. To avoid this problem

we first carried out a smoothened fit of the experimental volumes versus atomic

number over the lanthanoide nitride series, but with CeN, PrN, and GdN omitted

from the fit, as shown by the solid line in Fig. 4.4. We then used these fitted values

to set the target volumes for the optimization of the pseudopotentials.

We used density-functional perturbation theory [19] to calculate the dielec-

tric response. Both purely electronic ǫel and ionic ǫion contributions were calcu-

lated [146]. The electronic part is defined as

ǫelαβ = δαβ + 4π
∂Pα

∂Eβ

∣∣∣∣
u=0

, (4.1)

where Pα is the polarization induced by the electric field Eβ while all ions are held

fixed (u = 0). The remaining component of the dielectric response is by definition

the ionic contribution ǫion.

1In the case of GdN the anomaly is more likely the result of the large spin splitting and
strong ferromagnetism associated with the huge magnetic moment of the 4f7 configuration.



90

Figure 4.4: Unit cell volumes of all rock-salt rare-earth nitrides, in Å3. Empty
squares are the results obtained using our optimized ultrasoft pseudopotentials
for rare-earth atoms; solid circles are experimental [145] results. The solid line is
a fit to the experimental values excluding CeN, PrN, and GdN.

This ionic part can be calculated from the force-constant matrix Φiα,jβ and

the Born effective charge matrix Zi,αβ. The force-constant matrix is defined as

Φiα,jβ =
∂2E

∂uiα∂ujβ
, (4.2)

where E is the total energy of the system and uiα is the displacement of the i-th

atom along the direction α. We will denote the n-th normalized eigenvector of

this matrix as ξniα and its eigenvalue as µn. The Born effective charge matrix is

defined as

Zi,αβ =
V

e

∂Pα

∂uiβ
, (4.3)

where Pα is the polarization induced in a crystal by the displacement of the i-th

atom in the direction β. V is the volume of the unit cell and e is the electron
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charge. Finally, the ionic part of the dielectric tensor can be written as

ǫionαβ =
4πe2

V

∑

n

1

µn

Qn
αQ

n
β, (4.4)

where the charge Qn
α of the n-th eigenmode is defined through the effective charge

matrix as Qn
α =

∑

iβ

Zi,αβξ
n
iβ.

4.3 Results and discussion

4.3.1 Structural properties

We focus first on the structural properties of these systems. The structure of the

Pbnm perovkites is described by three orthorhombic lattice constants plus two A-

site and five oxygen Wyckoff parameters. Figure 4.5 shows graphically the most

important structural parameters of these systems, while Table 4.1 gives detailed

information on all the structural parameters. Rotational angles in Table 4.1 and

in Fig. 4.5 were calculated by fitting the structural parameters to a model in which

the octahedra are perfectly rigid (see Sec. 4.3.2 for the details of this model).

Overall we find good agreement with experimental values for the structural

parameters. The Wyckoff coordinates in particular are in excellent agreement

with experiments, with the average error being on the order of 2 · 10−3. The

volume of the unit cell, on the other hand, is consistently overestimated by 1-2%,

as is usually expected from the GGA exchange-correlation functional, and as we

would expect from our construction of the rare-earth pseudopotentials.

All structures show an angle θR that is about
√

2 times larger than θM. There-

fore, consecutive rotations by θR and θM can be considered approximately as a sin-

gle rotation around a {111} axis in the cubic frame. That is, the actual (a−a−c+)

pattern of rotations is very nearly (a−a−a+) in the Glazer notation [142]. See
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Sec. 4.3.6 for a more detailed discussion.

Rare-earth scandates

The rare-earth scandates AScO3 show a decrease in volume by ∼9% while going

along the series from A=La to A=Dy (the calculated primitive unit cell volume is

271.40 Å3 for LaScO3 and 249.81 Å3 for DyScO3). On the other hand, the Sc-O

distance remains nearly constant along the series (2.12 Å for LaScO3 and 2.11 Å

for DyScO3), which means that the change in volume is almost entirely due to

the larger octahedral rotation angles for DyScO3 as compared to LaScO3. Our

calculations also show that the same trend continues all the way to LuScO3.

Rare-earth yttrates

The rare-earth yttrates have a very similar behavior as the rare-earth scandates.

The main quantitative structural difference between the two comes from the fact

that yttrium is a larger ion than scandium. This leads to a larger volume for the

yttrates, and also a larger rotation angle due to a smaller tolerance factor.

CaZrO3, SrZrO3, and SrHfO3

SrZrO3 and SrHfO3 have quite similar structural properties. The main difference

can be traced to the fact that Hf is a smaller ion than Zr. Therefore, the calcu-

lated average Hf-O distance is 2.07 Å, while the average Zr-O distance is 2.11 Å.

Furthermore, their octahedral rotation angles are about 1.7 times smaller than in

the rare-earth scandates.

In CaZrO3 the average Zr-O distance is 2.10 Å, which is very close to the cor-

responding distance in SrZrO3 and SrHfO3. Thus, the main reason why CaZrO3

has a smaller volume than SrZrO3 is because of the larger rotation angles in

CaZrO3.
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La2BB’O6 compounds

We consider La2BB
′O6 compounds with B=Mg or Ca and B′=Zr or Hf. These

compounds are expected to exhibit rock-salt ordering of the B-site ions as a result

of the difference in charge and ionic radius between the B and B′ ions [147]. This

ordering reduces the symmetry from the orthorhombic Pbnm to the monoclinic

P21/c (C5
2h) space group.

The structural properties for these systems are reported in Fig. 4.5 and in

Table 4.2. The rotational angles are obtained by a fit to the rigid-octahedra model

in which we have allowed for different sizes of B- and B′-centered octahedra. (See

the end of Sec. 4.3.2 for details.)

The unit cell volume is larger by about 5 Å3 per primitive cell for the com-

pounds containing Zr than for those containing Hf. On the other hand, com-

pounds with Ca are larger by about 28 Å3 than those containing Mg. Similarly,

the rotation angles are larger in compounds containing Ca than in those with Mg.

The discrepancy between octahedral sizes is largest for La2CaHfO6 (12% linear

increase) and smallest for La2MgZrO6 (0.4% linear increase).

Rare-earth rare-earth perovskites

We now briefly analyze the structural properties of Pbnm perovskites of type

AA’O3 where both A and A’ are rare-earth atoms. All eleven compounds we con-

sidered are known experimentally to form the perovskite structure in the Pbnm

space group [136, 138, 139].

Among these 11 compounds, the largest unit-cell volume of 311.58 Å3 is found

in LaHoO3, and the smallest of 292.32 Å3 is in NdLuO3, Oxygen oxtahedral

rotation angles are quite large in all of these compounds and show very little

variation from one compound to another. The trends of the rotation angles are
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as expected from a tolerance-factor analysis: perovskites with smaller A-site ions

but the same B-site ions have larger oxygen octahedral rotation angles, and the

opposite is true for the B-site ions.
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Table 4.1: Structural parameters of the Pbnm perovskites we considered. Our calculated values are indicated with the letter T,
experimental values with E and other theoretical data with O. Fitted octahedra rotation angles θR and θM are given in degrees,
see Sec. 4.3.2 for the details. A-site ions occupy the 4c site and in cubic configuration x1 = 0 and y1 = 1/2. B-site ions are on
the 4a site. One type of oxygen sites are at 4c and in the cubic case x2 = 0 and y2 = 0. The remaining oxygens are at 8d and
x3 = 1/4, y3 = 1/4 and z3 = 0 in the cubic case.

Unit cell parameters Wyckoff coordinates Model

a b c V b/a c/a x1 y1 x2 y2 x3 y3 z3 θR θM
(Å) (Å) (Å) (Å3) (◦) (◦)

LaScO3 T 5.7030 5.8414 8.1469 271.40 1.0243 1.4285 0.0123 0.5467 −0.0977 −0.0323 0.2059 0.2943 0.0523 14.9 9.9

Ea 5.6803 5.7907 8.0945 266.25 1.0194 1.4250 0.0100 0.5428 −0.0968 −0.0277 0.2073 0.2958 0.0521 14.6 9.6

PrScO3 T 5.6372 5.8367 8.0908 266.21 1.0354 1.4352 0.0148 0.5537 −0.1049 −0.0377 0.2014 0.2979 0.0557 16.4 11.0

Ej 5.608 5.780 8.025 260.1 1.0307 1.4310 0.0121 0.5507 −0.1052 −0.0395 0.1977 0.3008 0.0555 16.2 11.2

NdScO3 T 5.6077 5.8317 8.0667 263.80 1.0399 1.4385 0.0159 0.5562 −0.1083 −0.0401 0.1997 0.2992 0.0574 17.0 11.5

Eb 5.577 5.777 8.005 257.9 1.0359 1.4354 0.0133 0.5532 −0.1088 −0.0418 0.1953 0.3020 0.0571 16.8 11.8

SmScO3 T 5.5483 5.8067 8.0196 258.37 1.0466 1.4454 0.0176 0.5596 −0.1159 −0.0455 0.1964 0.3019 0.0610 18.2 12.5

Eb 5.531 5.758 7.975 254.0 1.0410 1.4419 0.0149 0.5566 −0.1163 −0.0468 0.1935 0.3037 0.0609 17.9 12.5

GdScO3 T 5.4987 5.7794 7.9861 253.79 1.0510 1.4524 0.0191 0.5617 −0.1222 −0.0502 0.1941 0.3036 0.0642 19.0 13.3

Eb 5.481 5.745 7.929 249.7 1.0482 1.4466 0.0163 0.5599 −0.1209 −0.0501 0.1912 0.3052 0.0628 18.7 13.2

TbScO3 T 5.4764 5.7646 7.9735 251.72 1.0526 1.4560 0.0198 0.5624 −0.1251 −0.0524 0.1932 0.3043 0.0656 19.4 13.7

Ek 5.4543 5.7233 7.9147 247.07 1.0493 1.4511 0.0167 0.5603 −0.1239 −0.0545 0.1900 0.3054 0.0643 19.1 13.7

DyScO3 T 5.4560 5.7501 7.9629 249.81 1.0539 1.4595 0.0203 0.5630 −0.1276 −0.0545 0.1923 0.3050 0.0669 19.7 14.1

Of 5.449 5.739 7.929 248.0 1.0532 1.4551 0.019 0.562 −0.130 −0.057 0.190 0.307 0.068 19.9 14.1

Eb 5.443 5.717 7.901 245.9 1.0503 1.4516 0.0174 0.5616 −0.1262 −0.0561 0.1886 0.3063 0.0659 19.4 13.9

LaYO3 T 5.9035 6.1225 8.5810 310.16 1.0371 1.4535 0.0173 0.5506 −0.1284 −0.0581 0.1948 0.3035 0.0689 18.9 13.6

Continued on next page
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Unit cell parameters Wyckoff coordinates Model

a b c V b/a c/a x1 y1 x2 y2 x3 y3 z3 θR θM
(Å) (Å) (Å) (Å3) (◦) (◦)

El 5.890 6.086 8.511 305.1 1.0333 1.4450

CaZrO3 T 5.5974 5.7875 8.0416 260.51 1.0340 1.4367 0.0133 0.5506 −0.1078 −0.0413 0.1976 0.2999 0.0572 16.6 11.6

Em 5.5831 5.7590 8.0070 257.45 1.0315 1.4341 0.0122 0.5495 −0.1044 −0.0401 0.1976 0.3000 0.0554 16.2 11.4

SrZrO3 T 5.8068 5.8602 8.2323 280.14 1.0092 1.4177 0.0070 0.5311 −0.0759 −0.0195 0.2140 0.2857 0.0401 11.6 7.7

Og 5.652 5.664 7.995 255.9 1.0021 1.4145 0.007 0.534 −0.107 −0.036 0.199 0.301 0.056 14.7 10.0

Ec 5.7963 5.8171 8.2048 276.65 1.0036 1.4155 0.0040 0.5242 −0.0687 −0.0133 0.2154 0.2837 0.0363 10.4 7.2

SrHfO3 T 5.7552 5.7754 8.1365 270.45 1.0035 1.4138 0.0052 0.5230 −0.0660 −0.0128 0.2209 0.2792 0.0346 10.0 6.2

Oh 5.6887 5.7016 8.0455 260.95 1.0023 1.4143 0.006 0.528 −0.073 −0.016 0.2166 0.2834 0.0385 10.8 7.0

Ed 5.7516 5.7646 8.1344 269.70 1.0023 1.4143 0.0040 0.5160 −0.0630 −0.0140 0.2189 0.2789 0.0335 9.6 6.4

LaHoO3 T 5.9135 6.1367 8.5859 311.58 1.0377 1.4519 0.0170 0.5508 −0.1293 −0.0587 0.1936 0.3044 0.0692 19.0 13.6

Ei 5.884 6.094 8.508 305.1 1.0357 1.4460

LaErO3 T 5.8971 6.1174 8.5509 308.48 1.0374 1.4500 0.0169 0.5509 −0.1272 −0.0567 0.1945 0.3036 0.0681 18.7 13.3

Ei 5.870 6.073 8.465 301.8 1.0346 1.4421

LaTmO3 T 5.8829 6.1002 8.5190 305.73 1.0369 1.4481 0.0167 0.5509 −0.1252 −0.0549 0.1951 0.3030 0.0670 18.5 13.1

Ei 5.859 6.047 8.453 299.5 1.0321 1.4427

LaYbO3 T 5.8692 6.0833 8.4890 303.09 1.0365 1.4464 0.0164 0.5509 −0.1233 −0.0532 0.1957 0.3024 0.0659 18.3 12.8

Ei 5.843 6.033 8.432 297.2 1.0325 1.4431

LaLuO3 T 5.8579 6.0695 8.4646 300.95 1.0361 1.4450 0.0162 0.5508 −0.1217 −0.0518 0.1962 0.3020 0.0651 18.2 12.6

Ee 5.8259 6.0218 8.3804 294.00 1.0336 1.4385 0.0138 0.5507 −0.121 −0.056 0.193 0.307 0.063 17.9 12.7

CeTmO3 T 5.8520 6.0870 8.4984 302.72 1.0401 1.4522 0.0179 0.5528 −0.1283 −0.0575 0.1942 0.3036 0.0686 19.0 13.5

Ei 5.828 6.035 8.405 295.6 1.0355 1.4422

CeYbO3 T 5.8381 6.0707 8.4671 300.09 1.0398 1.4503 0.0176 0.5529 −0.1264 −0.0558 0.1948 0.3031 0.0676 18.8 13.3

Continued on next page
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Unit cell parameters Wyckoff coordinates Model

a b c V b/a c/a x1 y1 x2 y2 x3 y3 z3 θR θM
(Å) (Å) (Å) (Å3) (◦) (◦)

Ei 5.806 6.009 8.373 292.1 1.0350 1.4421

CeLuO3 T 5.8270 6.0578 8.4420 297.99 1.0396 1.4488 0.0174 0.5529 −0.1249 −0.0544 0.1952 0.3027 0.0667 18.7 13.1

Ei 5.793 5.997 8.344 289.9 1.0352 1.4404

PrYbO3 T 5.8085 6.0544 8.4481 297.10 1.0423 1.4544 0.0185 0.5542 −0.1296 −0.0585 0.1936 0.3039 0.0692 19.3 13.7

Ei 5.776 5.995 8.368 289.8 1.0379 1.4488

PrLuO3 T 5.7974 6.0424 8.4217 295.01 1.0423 1.4527 0.0183 0.5543 −0.1281 −0.0571 0.1936 0.3036 0.0683 19.1 13.5

Ei 5.768 5.991 8.340 288.2 1.0387 1.4459

NdLuO3 T 5.7699 6.0270 8.4062 292.32 1.0446 1.4569 0.0193 0.5555 −0.1310 −0.0596 0.1932 0.3042 0.0699 19.5 14.0

Ei 5.737 5.974 8.311 284.8 1.0413 1.4487

a Reference [148]. b Reference [149]. c Reference [150]. d Reference [151]. e Reference [138]. f Reference [129]. g Reference [130].

h Reference [131]. i Reference [136]. j Reference [152]. k Reference [153]. l Reference [154]. m Reference [155].
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Table 4.2: Structural parameters of the La2BB
′O6 perovskites we considered,

space group P21/c. Angles are given in degrees, unit cell vectors in Å and unit
cell volumes in Å3. Monoclinic angle between a and c lattice vectors is denoted
as αac. A-site ions occupy the 4e site with coordinate (3/4, 1/2, 1/4). B-site
ions (either Mg or Ca) occupy the 2a site and B′ (Zr or Hf) occupy the 2d site.
There are three non-equivalent positions for oxygens and they all occupy 4e sites.
Coordinates of oxygen atoms in the cubic case are (1/2, 0, 1/4), (1/4, 1/4, 0), and
(3/4, 1/4, 0). Fitting parameters θR, θM, θ′M and d/d′ are also given; see Sec. 4.3.2
for the details.

Unit cell Model Wyckoff coordinates

La2MgZrO6

a 5.6899 θR 15.7 x y z

b 5.8169 θM 10.0 La 0.7634 0.4546 0.2489

c 8.1274 θ′M 10.1 OI 0.6538 0.0305 0.2505

αac 90.301 d/d′ 1.004 OII 0.2411 0.2080 0.0523

V 269.00 OIII 0.8429 0.2938 −0.0499

Unit cell Model Wyckoff coordinates

La2MgHfO6

a 5.6669 θR 14.9 x y z

b 5.7679 θM 9.3 La 0.7622 0.4578 0.2490

c 8.0765 θ′M 9.5 OI 0.6567 0.0270 0.2525

αac 90.205 d/d′ 1.018 OII 0.2430 0.2121 0.0498

V 263.99 OIII 0.8356 0.2928 −0.0474

Unit cell Model Wyckoff coordinates

La2CaZrO6

a 5.8188 θR 19.9 x y z

b 6.0547 θM 12.0 La 0.7698 0.4469 0.2471

c 8.4245 θ′M 13.2 OI 0.6134 0.0538 0.2649

αac 90.182 d/d′ 1.100 OII 0.2464 0.2123 0.0708

V 296.80 OIII 0.8500 0.3142 −0.0588

Unit cell Model Wyckoff coordinates

La2CaHfO6

a 5.7946 θR 19.3 x y z

b 6.0211 θM 11.6 La 0.7687 0.4477 0.2474

c 8.3680 θ′M 13.0 OI 0.6155 0.0506 0.2668

αac 90.100 d/d′ 1.117 OII 0.2501 0.2150 0.0685

V 291.96 OIII 0.8447 0.3149 −0.0568
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Figure 4.5: Structural information for all systems we considered. Bottom pane shows volume in Å3 per formula unit (f. u.) of
ABO3. Calculated values are shown as red circles, and experimental values as blue plus symbols, if available. Top pane shows
oxygen octahedra rotation angles in degrees. Theoretical values are shown with red circles and squares and experimental values
with blue plus and cross symbols. θR angles are shown with circles and plus symbols while θM angles with squares and cross
symbols. For La2BB

′O6 systems the average of θM and θ′M is given. For numerical values see Table 4.1 and 4.2.
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4.3.2 Comparison with model of perfectly rigid octahedra

In Pbnm perovskites, a rigid rotation of the oxygen octahedra by θR followed by

another rigid rotation by θM (see Fig. 4.3) leads to Wyckoff parameters given by

x2 = − 1

2
√

2
tan θR, (4.5)

y2 = − 1

2
√

2
sin θR tan θM, (4.6)

x3 =
1

4

(
1 − tan θM

cos θR

)
, (4.7)

y3 =
1

4
(1 + cos θR tan θM) , (4.8)

z3 =
1

4
√

2
tan θR, (4.9)

Here we have denoted the Wyckoff coordinates of the oxygen atoms at the 4c

Wyckoff point with x2 and y2, while those of the remaining oxygen atoms at the

8d point are denoted with x3, y3, and z3. The Wyckoff coordinates of the A-site

ion at the 4c point are denoted by x1 and y1, but these are left unspecified in our

rigid-octahedra model. It also leads to orthorhombic lattice constants given by

a = 3

√
V0√

2
cos θR cos θM, (4.10)

b = 3

√
V0√

2
cos θM, (4.11)

c = 3

√
2V0 cos θR (4.12)

where V0 is the volume the structure would have if the octahedra were rotated

rigidly back to θR = θM = 0.

The Wyckoff parameters and unit-cell ratios from our calculations can be well

fitted by Eqs. (4.5)-(4.12) (see Table 4.1 and Fig. 4.5 for the values of the fitted

angles). By far the largest discrepancy is found for Wyckoff parameter y2. For
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a typical system (e.g., LaScO3) the discrepancy between calculated and fitted y2

values is about 0.016, or 50% with respect to the difference from the cubic case.

For the remaining oxygen Wyckoff coefficients, the discrepancy averages about

0.003, or ∼5%.

The rotation angles for the La2BB
′O6 systems were obtained by fitting their

structural parameters to a slightly more complicated model of rigid octahedra

than the one given in Eqs. (4.5)-(4.12). In this model, we first change the relative

sizes of B- and B′-centered octahedra. The ratio of their linear sizes is denoted

by d/d′. We then proceed with the rotation by an angle θR around the [110] axis

in the cubic frame. Finally, we perform a rotation of the B-centered octahedra

around [001] by an angle θM, and of the B′-centered octahedra by an angle θ′M

around the same axis. The resulting fitted values of these parameters are given

in Table 4.2.

4.3.3 Dielectric properties

In this section we discuss the dielectric properties of the materials included in our

study. Pbnm perovskites are orthorhombic and thus have diagonal dielectric ten-

sors, with ǫxx 6= ǫyy 6= ǫzz in general. In addition to reporting these components,

we also focus on analyzing the results in terms of the three linear combinations

ǭ =
1

3
(ǫxx + ǫyy + ǫzz) , (4.13)

∆ǫ‖ = ǫxx − ǫyy, (4.14)

∆ǫ⊥ = ǫzz −
1

2
(ǫxx + ǫyy) , (4.15)

representing the average dielectric tensor, a measure of the x-y anisotropy, and

a measure of z anisotropy, respectively. This choice of parameters was made to

simplify the analysis of trends of dielectric properties of these compounds. The
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theoretical – and where available, experimental – results for the dielectric-tensor

components are reported in Figure 4.6 and in Table 4.3. The theoretical values

are further decomposed in Table 4.3 into purely electronic or frozen-ion contri-

butions ǫel and lattice-mediated contributions ǫion. We find that the electronic

contribution is roughly five times smaller than the ionic one, is nearly isotropic,

and does not show a dramatic variation from one perovskite to another. Thus,

it is clear that the lattice-mediated ionic contributions play by far the dominant

role in the observed dielectric tensors and their anisotropies.

We now consider each of our chosen classes of Pbnm perovskites in turn,

orienting the presentation from the point of view of the theoretical calculations,

but mentioning the comparison with experiment where appropriate.

Rare-earth scandates

All rare-earth scandates AScO3 have rather similar values for their isotropically-

averaged dielectric constants, falling between about ǭ = 26 and ǭ = 28. The

xx component for all these systems is larger than the yy component by about

∆ǫ‖ = 4. On the other hand, the zz component changes significantly from LaScO3

to DyScO3. In LaScO3 the average of the xx and yy components is almost as large

as the zz component (∆ǫ⊥=-1), while in DyScO3, the zz component is larger by

about ∆ǫ⊥=9 than the average of xx and yy components.

These results are in good agreement with experiment, especially for ǭ and ∆ǫ‖.

On the other hand, ∆ǫ⊥ is consistently larger in experiments by about 3-5, but

the trend of increasing ∆ǫ⊥ is present in both theory and experiment.

As was mentioned earlier, rare-earth atoms heavier than Dy (i.e., Ho-Lu)

and Y itself do not form single-crystal scandates. Nevertheless, at least some

(YbScO3 [135] and LuScO3 [126]) can form Pbnm perovskites in thin-film form.

In order to establish the trends of the dielectric properties for these materials, we
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calculated the dielectric tensors of LuScO3 and YScO3. The dielectric tensor of

LuScO3 shows the continuation of the trend from LaScO3 to DyScO3. Both xx

and yy components are slightly smaller than for DyScO3, their numerical values

being 23.5 and 21.4 respectively. On the other hand, the zz component (44.8) is

larger than for DyScO3 (32.6) and for LaScO3 (27.4). YScO3 has dielectric tensor

components of 26.9, 23.0, and 37.7 for its xx, yy, and zz components, respectively.

Rare-earth yttrates

We now consider the rare-earth yttrates, i.e., AYO3 where A is one of the rare-

earth atoms. These are similar to the rare-earth scandates, but with yttrium

on the B site instead of scandium. Only one such compound, LaYO3, is known

to form a perovskite [136], but others might form in thin films via epitaxial

stabilization. We find that LaYO3 has a larger zz component than does LaScO3.

In LaYO3 the zz component of the dielectric tensor is 38.0, while in LaScO3 it is

27.4. On the other hand, the xx and yy components are almost unchanged with

respect to LaScO3. In LaYO3 the xx component is 30.6 and the yy component is

25.7. We also find that heavier rare-earth atoms on the A-site tend to destabilize

this Pbnm structure even further. For example, we find that DyYO3 in the Pbnm

structure has an unstable mode at i70 cm−1 that is IR-active along the z direction.

CaZrO3, SrZrO3, and SrHfO3

According to our calculations, SrZrO3 and SrHfO3 show large and rather isotropic

dielectric tensors. The average dielectric tensor ǭ is 40.9 and 32.8 in SrZrO3 and

SrHfO3, respectively. Their x-y anisotropies have an opposite sign as compared

to all of the other compounds we analyzed. Unfortunately, because of twinning

(see Ref. [2]), only average dielectric constant was measured for these systems,

and therefore we could not directly compare our full calculated dielectric tensors
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with experiment. Still, if we make a comparison between theory and experiment

for the average dielectric tensor ǭ, the agreement is reasonable.

Our calculations suggest that the CaZrO3 compound, on the other hand, has

a very high value of the z-anisotropy of 28.1. Its x-y anisotropy of 1.1, on the

other hand, is quite small. The average dielectric tensor ǭ = 43.6 is the highest

among the all compounds we considered, mostly because of the very large ǫzz

component of the dielectric tensor. Very similar results were also obtained in

other theoretical studies [156, 157].

La2BB’O6 compounds

The La2BB
′O6 systems show a small, non-zero off-diagonal ǫxz component, −0.4

for La2MgZrO3 and 4 for La2CaZrO3. ǫxz is allowed because the space group is

reduced from orthorhombic (Pbnm) to monoclinic (P21/c) for these compounds.

Their isotropically-averaged dielectric tensors are larger for systems containing

Ca than for those with Mg, and a bit larger for those with Zr than for those

with Hf. Therefore, the dielectric response in this class of materials is largest

for La2CaZrO6, with ǭ = 28.5, and smallest for La2MgHfO6, with ǭ = 23.6. All

computed dielectric tensor components for these systems are given in Table 4.4.

Rare-earth rare-earth perovskites

The 11 rare-earth–rare-earth perovskites we considered show a bigger variation in

the isotropically-averaged dielectric constant ǭ than do the rare-earth scandates

(LaScO3 - DyScO3). The largest average dielectric constant among them is 32.9

in LaHoO3. The largest component of a dielectric tensor is also found in LaHoO3,

whose ǫzz is 41.7.

The measure ∆ǫ‖ of x-y anisotropy shows little variation among the com-

ponents in this series. The anisotropy is of the same sign as in the rare-earth
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scandates.

Finally, the z anisotropy ∆ǫ⊥ once more shows a larger variation than in

the rare-earth scandates. This anisotropy is largest for LaHoO3 and smallest for

LaLuO3.
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Table 4.3: Dielectric parameters of the perovskites with space group Pbnm that we considered. Our calculated values are
denoted by the letter T, experimental values with E, and other theoretical data with O. First all three non-zero dielectric
constant tensor components are given. Next, the average dielectric constant tensor, the x-y anisotropy, and z anisotropy are
given; see Eqs. (4.13)-(4.15). Finally, the electronic and ionic contributions are given separately.

Dielectric tensor Reduced variables Electronic part Ionic part

ǫxx ǫyy ǫzz ǭ ∆ǫ‖ ∆ǫ⊥ ǫelxx ǫelyy ǫelzz ǫionxx ǫionyy ǫionzz

LaScO3 T 30.4 26.4 27.4 28.1 4.0 −1.0 5.0 5.0 4.8 25.3 21.5 22.6

PrScO3 T 28.6 24.2 26.2 26.3 4.4 −0.1 5.0 5.0 4.8 23.5 19.2 21.5

E2 25.4 27.3 29.6 27.4 −1.9 3.3

NdScO3 T 27.8 23.4 26.1 25.7 4.4 0.5 5.0 4.9 4.7 22.8 18.5 21.3

E2 25.5 21.5 26.9 24.6 4.0 3.4

SmScO3 T 27.2 22.9 27.3 25.8 4.3 2.3 4.9 4.9 4.7 22.2 18.0 22.7

E2 23.1 19.9 29.0 24.0 3.2 7.5

GdScO3 T 26.4 22.5 29.3 26.1 3.9 4.9 4.9 4.8 4.6 21.6 17.7 24.7

E2 22.8 19.2 29.5 23.8 3.6 8.5

TbScO3 T 26.1 22.4 30.7 26.4 3.7 6.5 4.8 4.8 4.6 21.2 17.6 26.1

DyScO3 T 25.7 22.3 32.6 26.9 3.5 8.6 4.8 4.8 4.5 20.9 17.5 28.0

O1 24.1 21.2 27.7 24.3 2.9 5.1 4.9 4.9 4.7 19.2 16.3 23.0

E2 21.9 18.9 33.8 24.9 3.0 13.4

LaYO3 T 30.6 25.7 38.0 31.4 4.9 9.9 4.7 4.6 4.3 25.9 21.1 33.7

CaZrO3 T 34.8 33.7 62.4 43.6 1.1 28.1 4.6 4.7 4.6 30.2 29.1 57.8

E6 30

SrZrO3 T 38.0 41.5 43.3 40.9 −3.4 3.5 4.6 4.6 4.6 33.4 36.9 38.7

O3 19.9 21.5 23.0 21.5 −1.6 2.3 5.1 4.9 4.8 14.8 16.6 18.2

Continued on next page
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Dielectric tensor Reduced variables Electronic part Ionic part

ǫxx ǫyy ǫzz ǭ ∆ǫ‖ ∆ǫ⊥ ǫelxx ǫelyy ǫelzz ǫionxx ǫionyy ǫionzz

E2 32

SrHfO3 T 30.0 35.1 33.2 32.8 −5.1 0.7 4.3 4.3 4.3 25.7 30.9 29.0

O4 33.1 46.8 40.8 40.2 −13.7 0.9 4.4 4.3 4.3 28.7 42.4 36.5

E2 26.2

LaHoO3 T 31.0 26.0 41.7 32.9 5.0 13.3 4.7 4.6 4.3 26.3 21.4 37.4

LaErO3 T 29.9 25.0 36.4 30.4 4.9 9.0 4.7 4.6 4.3 25.2 20.4 32.1

LaTmO3 T 29.0 24.2 33.3 28.8 4.8 6.7 4.6 4.6 4.3 24.4 19.7 29.0

LaYbO3 T 28.3 23.6 30.9 27.6 4.7 5.0 4.6 4.5 4.3 23.6 19.1 26.6

LaLuO3
5 T 27.6 23.1 29.3 26.7 4.5 3.9 4.6 4.5 4.3 23.0 18.6 25.0

CeTmO3 T 27.9 23.5 34.9 28.8 4.4 9.2 4.6 4.6 4.3 23.3 18.9 30.6

CeYbO3 T 27.2 22.8 32.1 27.4 4.4 7.0 4.6 4.6 4.3 22.6 18.3 27.8

CeLuO3 T 26.6 22.3 30.2 26.4 4.3 5.7 4.6 4.5 4.3 22.0 17.8 25.9

PrYbO3 T 26.6 22.7 34.7 28.0 4.0 10.1 4.6 4.5 4.3 22.0 18.2 30.4

PrLuO3 T 26.1 22.0 32.2 26.8 4.0 8.1 4.6 4.5 4.3 21.5 17.5 27.9

NdLuO3 T 25.3 21.7 34.5 27.2 3.6 11.0 4.6 4.5 4.3 20.8 17.2 30.2
1 Reference [129]. 2 Reference [2]. 3 Reference [130]. 4 Reference [131]. 5 Experimental data in reference [158]. 6 Reference [155].



108

Table 4.4: Dielectric parameters of the La2BB
′O6 perovskites we considered. First

all four dielectric constant tensor components are given, followed by the average
value of the dielectric constant tensor. Finally, the electronic and ionic contribu-
tions to dielectric constant tensor are given. x axis is chosen along lattice vector
a, y along b, and z close to c (with the small component along a due to monoclinic
cell).

Dielectric tensor Electronic part Ionic part

ǫxx ǫyy ǫzz ǫxz ǭ ǫelxx ǫelyy ǫelzz ǫelxz ǫionxx ǫionyy ǫionzz ǫionxz

La2MgZrO6 26.5 23.6 24.4 −0.4 24.8 4.8 4.6 4.5 −0.06 21.7 18.9 19.8 −0.3

La2MgHfO6 24.9 22.9 22.9 −0.3 23.6 4.6 4.5 4.4 −0.05 20.3 18.4 18.5 −0.3

La2CaZrO6 29.9 24.9 30.6 3.8 28.5 4.7 4.6 4.4 −0.06 25.2 20.3 26.2 3.8

La2CaHfO6 27.4 23.0 26.6 2.6 25.7 4.6 4.5 4.3 −0.04 22.9 18.5 22.3 2.6
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Figure 4.6: Dielectric information for all systems we considered. Bottom pane shows average dielectric tensor ǭ, mid-pane shows
x-y anisotropy of the dielectric tensor, ∆ǫ‖, and z anisotropy of the dielectric tensor ∆ǫ⊥ is given in top pane. Calculated values
are shown with red circles and experimental values with blue cross symbols, if available. See Table 4.3 for numerical values.
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4.3.4 Decomposition of the ionic contribution to the dielec-

tric tensor

As already mentioned, the ionic contribution to the dielectric tensor dominates in

all of the systems we considered. The expression for the ionic contribution given

in Eq. (4.4) provides a decomposition into contributions coming from eigenmodes

of the force-constant matrix. The Pbnm symmetry in perovskites, which is also

approximately satisfied in La2BB
′O6 compounds, allows a given eigenmode to

contribute only to a single component (ǫxx, ǫyy, or ǫzz) of the dielectric tensor.

This decomposition is given in Fig. 4.7 for all three components.

In rare-earth scandates, all three directions are evidently very different. The

ǫxx component is dominated by a low-lying mode whose contribution is almost

constant along the series (it contributes to ǫxx by 9.6 for LaScO3 and 11.1 for

DyScO3). The ǫyy component, on the other hand, has sizable contributions com-

ing from several modes. Finally, the ǫzz component comes mostly from a single

low-lying mode. Unlike for the ǫxx component, the contribution from the mode

responsible for the ǫzz component changes dramatically across the series, varying

from 6.9 for LaScO3 to 16.3 for DyScO3. This explains the large value of the z

anisotropy in DyScO3 as compared to LaScO3 that is visible in Fig. 4.6.

A behavior similar to that of the rare-earth scandates is also observed in

LaYO3 and in the rare-earth rare-earth perovskites. The SrZrO3 and SrHfO3

compounds show a quite similar behavior to each other. The ǫxx component

has contributions coming from many modes, the ǫyy component is dominated

by a single low-lying mode, and ǫzz is dominated by two low-lying modes. On

the other hand, ǫzz component in CaZrO3 shows very large contribution coming

from a single low-lying mode. Finally, we note that the La2BB
′O6 compounds

containing Ca have stronger contributions to ǫxx and ǫzz from low-lying modes

than do those containing Mg.
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Figure 4.7: Eigenvalues of a force constant matrix Φiα,jβ of modes that contribute to ǫionxx (first horizontal pane from bottom),
ǫionyy (second pane), or ǫionzz (third) by more than 1.5. For each mode the area of the circle is proportional to its contribution to

ǫionii . Eigenvalues are in eV/Å2.
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4.3.5 Compounds with R3̄c symmetry

At room temperature the ground state of BiFeO3 is ferroelectric with polar space

group R3c, the pattern of octahedral rotations being (a−a−a−) in the Glazer

notation. At higher temperature, however, BiFeO3 undergoes a phase transition

in which the ferroelectricity and the (a−a−a−) pattern of octahedral rotations

disappear simultaneously [159, 160]. This observations led us to hypothesize that

rotations of octahedra around the pseudocubic [111] axis, as in the (a−a−a−)

pattern, tend to be energetically compatible with the presence of a ferroelectric

distortion along the same axis. This would tend to suggest that perovskites that

adopt the centrosymmetric R3̄c group, which also exhibits the (a−a−a−) pattern

of oxygen octahedra, might be close to a ferroelectric instability leading to the

lower-symmetry R3c space group, and thus that such compounds might have an

especially large component of the dielectric tensor along the pseudocubic [111]

axis.

To test this hypothesis, we have carried out a series of calculations on SrZrO3

and GdScO3 in which structural relaxation was allowed while maintaining the R3̄c

symmetry. In both compounds we find some IR-active phonon modes that either

have very low or imaginary frequency, indicating a near or actual instability. In

the case of SrZrO3 we find a mode that is active along the [111] pseudocubic

direction and has an extremely small frequency of only 6 cm−1, while for GdScO3

we find that the corresponding mode is unstable with an imaginary frequency of

i142 cm−1. These calculations show that imposing the R3̄c structure on SrZrO3

and GdScO3 make them nearly or actually ferroelectric, thus confirming our hy-

pothesis.

Incidentally, the observation that SrZrO3 is more likely than GdScO3 to be

stabilized in the R3̄c structure is consistent with the fact that perovskite struc-

tures that prefer smaller rotation angles are more likely to form R3̄c than Pbnm
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structures, as discussed by Woodward [141]. We find that the rotational angles

for SrZrO3 in the Pbnm space group are θR = 11.6◦ and θM = 7.7◦, while in

GdScO3 they are substantially larger, θR = 19.0◦ and θM = 13.3◦. More directly,

we also find that the ground-state energy of SrZrO3 having the R3̄c structure is

only higher by 33.6 meV per formula unit than in the Pbnm structure. On the

other hand, in GdScO3 the R3̄c is higher in energy by a much larger increment

of 386 meV.

Finally, we note that LaAlO3, NdAlO3, and BaTbO3 may also be of interest,

as these all have the R3̄c space-group symmetry and should also be chemically

stable on silicon.

4.3.6 Correlation between structural and dielectric proper-

ties

The heuristic observation about BiFeO3 mentioned in the previous section (Sec. 4.3.5)

led us to make a more detailed analysis of the correlation between structural and

dielectric anisotropies in all five groups of Pbnm perovskites. As can be seen from

Fig. 4.3, the presence of the octahedral rotations breaks the symmetry among the

three Cartesian directions in the Pbnm perovskites. One would therefore naively

expect that the anisotropy in the dielectric tensor component should also be cor-

related with the size of these rotation angles, but this is not what we observe. For

example, LaScO3 and DyScO3 both have rather substantial octahedral rotation

angles (θR is 14.9◦ in LaScO3 and 19.7◦ in DyScO3), but they have very different

values of the dielectric z anisotropy (∆ǫ⊥ is −1.0 in LaScO3 and 8.6 in DyScO3).

An even more extreme behavior can be seen in the case of rare-earth perovskites

between, e.g., LaHoO3 and LaLuO3.

Thus, we find no simple correlation between the dielectric tensor anisotropies

and the values of the octahedral rotation angles. Instead, we find a correlation
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between the dielectric tensor anisotropies and the mismatch of the two rotation

angles θR and θM, as we explain next.

While the Pbnm symmetry does not impose any relationship between the two

octahedral rotation angles θR and θM, we find in practice that all the compounds

we studied obey the heuristic relationship θR ≃
√

2θM. This means that the

oxygen octahedra are rotated about the three Cartesian axes by almost the same

rotation angle, or equivalently, that the rotation axis is nearly 〈111〉. In the Glazer

language, these Pbnm perovskites having (a−a−c+) rotations can be said to be

very close to an (a−a−a+) pattern. We can measure the mismatch between the

actual (a−a−a+) and the hypothetical (a−a−c+) rotation pattern by the quantity

θM − θR/
√

2, and it is this quantity that we find to be strongly correlated with

the dielectric anisotropy ∆ǫ⊥.

This is shown in Fig. 4.8, where ∆ǫ⊥ is plotted versus θM − θR/
√

2 for all

of the compounds considered in this work. It is apparent that the III-III–valent

perovskites have a different behavior than the II-IV–valent ones. Nevertheless,

we conclude that in both cases there is a strong correlation between the mismatch

angle and the dielectric tensor anisotropy. The sign of the correlation is such that

a deviation from the (a−a−a+) pattern having an increased rotation angle around

the z axis gives a larger dielectric tensor component along the z axis, and thus a

larger z anisotropy ∆ǫ⊥.

4.3.7 Antisite substitutions

Experimentally the compositions of the perovskites that we have been describing

up to now by their nominal compositions, e.g., LaLuO3, are in fact slightly dif-

ferent from the compositions of the single crystals on which the dielectric tensors

were measured. This is because these crystals are grown at the congruently melt-

ing compositions, e.g., La0.94Lu1.06O3, which differ from the nominal compositions
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Figure 4.8: Correlation between the dielectric tensor z-anisotropy (∆ǫ⊥) and the
mismatch in the oxygen octahedra rotation angle. Only some perovskites are
labeled. Perovskites where both A and B ions are III-valent are indicated with
blue square symbols and those where A ions are II-valent and B are IV-valent are
indicated with red circles.

described up to now. The congruently melting compositions of all relevant Pbnm

perovskites studied have been found to be poor in the A-site cation and rich in

the B-site cation composition [161, 162, 152].

For this reason, we decided to carry out a theoretical analysis of the effects of

B atoms substituting at the A site on the structural and dielectric properties of

the material. Detailed calculations were done only for the case of LaLuO3, but we

expect that similar trends will be observed in the remaining rare-earth rare-earth

perovskites as well as in the rare-earth scandates and yttrates. Of course, other

kinds of compositional disorder might also be present, but such possibilities are

not analyzed here.

Analysis of antisite defects in LaLuO3

We studied LuLa antisite defects in LaLuO3 using a supercell approach. Specifi-

cally, in order to model a situation in which one of every 16 La atoms is substituted

by Lu, which is about a 6% substitution, we constructed an 80-atom supercell



116

containing a single antisite defect. The supercell is enlarged with respect to the

primitive 20-atom Pbnm primitive cell by doubling along both the orthorhombic

a and b lattice vectors. The resulting stoichiometry is

(La0.9375Lu0.0625)LuO3 or La0.9375Lu1.0625O3.

The presence of the LuLa antisite in this particular 80-atom supercell reduces

the crystal symmetry from orthorhombic Pbnm to monoclinic Pm. After full

relaxation of the crystal structure in this space group, we find that the a, b,

and c lattice vectors are reduced by 0.3%, 0.2% ,and 0.1%, respectively, while

the monoclinic angle between a and b lattice vectors of 90.03◦ deviates only very

slightly from 90◦.

The influence of the LuLa substitution on the dielectric properties is more

complex. Evaluated in the same coordinate frame as in the Pbnm unit cell, the

ǫxx and ǫyy dielectric tensor components remain almost unchanged, and the new

ǫxy component allowed by the monoclinic symmetry is quite small, only 2.1. On

the other hand, the ǫzz component is drastically altered by the presence of Lu

atom on the La site. In fact, we find that the 80-atom supercell is actually just

barely unstable in the Pm space group, as indicated by the presence of a phonon

mode with a very small imaginary frequency of i16 cm−1 2. The contribution of

this phonon mode to the ǫzz component (evaluated in the unstable Pm structure)

is therefore negative, specifically, −33.6. Since this phonon frequency is so close

to zero, we expect that it would get renormalized to positive frequency at room

temperature. For this reason, we did not follow the structural relaxation of our 80-

atom supercell along the direction of the unstable mode, and a realistic estimate of

2The eigendisplacement of this unstable mode is very close to that of the S-point ( 1
2

1

2
0)

phonon of the 20-atom Pbnm structure having a frequency of 39 cm−1. However, this phonon
remains inactive in the Pbnm structure because it does not appear at the Γ point.
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the dielectric response of the system is difficult. Nevertheless, we conclude that

LuLa substitutions in LaLuO3 have the potential to increase the ǫzz dielectric

tensor component substantially.

Discussion

As can be clearly seen in Fig. 4.6, our calculated z anisotropy (∆ǫ⊥) is consis-

tently larger than the measured one for all the rare-earth scandates for which

we have experimental measurements. In view of the calculations reported for

LaLuO3 above, we tentatively attribute this discrepancy to the generic tendency

of B atoms to substitute on the A site in these compounds. This observation is

consistent with the fact that smaller B ions that substitute for larger A ions will

reside in a relatively larger cage, providing room to rattle and thereby contribute

to an enhanced dielectric response.

4.4 Summary

The main focus of this work has been the application of computational methods

to study the structural and dielectric properties of various Pbnm perovskites that

have potentially large dielectric tensor components and are chemically stable on

silicon up to ∼1000 ◦C [101]. Such compounds might be good candidates for

future use as high-K dielectrics in microelectronics applications, e.g., as a possi-

ble replacement of hafnia-based high-K dielectrics currently used in the CMOS

transistors in integrated circuits.

Of the compounds we have considered, CaZrO3, SrZrO3, LaHoO3, and LaYO3

appear to be especially promising. CaZrO3 has the largest calculated average

dielectric tensor (ǭ = 43.6) among the compounds we considered, and SrZrO3 is

a close second with ǭ = 40.9. The dielectric tensor in CaZrO3 is very anisotropic,
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with its ǫzz component almost twice as large as ǫxx or ǫyy, while on the other

hand SrZrO3 has an almost isotropic dielectric tensor. Unfortunately, the full

dielectric tensors of these compounds have not yet been measured due to lack of

single crystals.

Of the rare-earth rare-earth Pbnm perovskites, only LaLuO3 has had its di-

electric tensor measured to date. Our results on this compound will be presented

in detail elsewhere [158]. The theoretical calculations, however, indicate that

other compounds in this series should have even larger dielectric tensor compo-

nents, with LaHoO3, having ǭ = 32.9, being the most promising among these.

LaYO3 is expected to behave very similar to LaHoO3 since Y and Ho have almost

the same ionic radii, so it may be promising as well (ǭ = 31.4). Thus, this series

of compounds clearly deserves additional scrutiny.

Of course, there are good reasons for preferring amorphous over single-crystalline

materials for such high-K applications. Certainly the ability of amorphous SiO2

to conform to the substrate and to eliminate electrical traps played a central

role in its dominance as the gate dielectric of choice for 40 years for silicon-based

metal-oxide-semiconductor field-effect transistors. The present hafnia-based high-

K dielectrics are amorphous or nanocrystalline [163]. For this reason, any eventual

application of these materials for high-K applications would presumably require

the adoption of one of two strategies. The first is the possibility of growing crys-

talline epitaxial oxides directly on silicon, which clearly would require a very high

level of control of interface chemistry and morphology before it could become a

practical solution. The second is the possibility that some of the compounds inves-

tigated here could be synthesized in amorphous or nanocrystalline form. We have

not investigated these issues here, nor have we tried to calculate what (possibly

very substantial) changes in the dielectric properties would occur in the amor-

phous counterparts, as this would take us far beyond the scope of the present
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study. Nevertheless, these are important questions for future investigations.
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Chapter 5

Large isosymmetric reorientation of

oxygen octahedra rotation axes in

epitaxially strained perovskites

Using first-principles density functional theory calculations, we discover anoma-

lously large bi-axial strain-induced reorientation of the axis about which the

oxygen octahedral framework rotates in orthorhombic perovskites with tendency

towards rhombohedral symmetry. The transition between crystallographically

equivalent (isosymmetric) structures with different octahedral rotation magni-

tudes originates from both the strong strain–octahedral rotation coupling avail-

able to perovskites and the energetic hierarchy among competing octahedral tilt

patterns. By elucidating these criteria, we suggest many functional perovskites

would exhibit the transition in thin film form, thus offering a new landscape in

which to tailor highly anisotropic electronic responses.

5.1 Introduction

Phase transitions are a ubiquitous phenomena in nature; they describe diverse

topics ranging from crystallization and growth to superconducting Cooper pair

condensation. Isosymmetric phase transitions (IPT)—those which show no change
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in occupied Wyckoff positions or crystallographic space group—are an intriguing

class since there are relatively few examples in crystalline matter [164]: Most con-

densed matter systems respond to external pressures and temperatures by under-

going “conventional” symmetry-lowering displacive [165], martensitic [166] or re-

constructive [58] transitions. Furthermore, the experimental characterization and

identification of a suitable symmetry-preserving order parameter through such

transitions is often challenging [167]. Although some electronic order parameters

[168, 169] that include ferroelectric [170, 171, 172, 173] or orbital polarizations

[174] have been proposed for IPT, which lead to subsequent changes in local

cation coordinations [175, 176, 177], to the best of our knowledge, there is no case

where the IPT connects two structures with essentially the same local bonding

environment.

Using first-principles density functional calculations, we find an isosymmet-

ric transition in the low energy rhombohedral phases of epitaxially strained or-

thorhombic perovskites and describe how to experimentally access it. We show

that the transition originates from non-polar distortions that describe the geomet-

ric connectivity and relative phase of the BO6 octahedra found in rhombohedral

and orthorhombics perovskites. Although a previous IPT in a thin film perovskite

that relies on strong strain–polar phonon coupling has been reported [178], we

describe here a universal symmetry preserving transition that originates from the

strong lattice–octahedral rotation coupling ubiquitous in nearly all perovskites,

not just those with ferroelectric tendencies. For this reason, the large isosym-

metric reorientation of the oxygen rotation axes should be readily observable in

many rhombohedral perovskites with diverse chemistries. Since dielectric tensor

studies from Chapter 4 indicate that the dielectric anisotropy in perovskites is

strongly linked to the deviations in the octahedral rotation axis direction, we

suggest control over the strain-induced reorientation of octahedral rotation axes
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could provide for highly tunable high-K dielectric actuators and temperature-free

relative permittivity resonance frequencies [179].

We choose LaGaO3 as our model system since it has a tolerance factor of

τ = 0.966 indicating the perovskite structure is highly susceptible to GaO6 octa-

hedral rotations about the principle symmetry axes [180]: At room temperature

it is orthorhombic (space group Pbnm) and undergoes a first-order phase tran-

sition to rhombohedral R3̄c around 418 K [181], with a subsequent change in

the GaO6 octahedral rotation patterns from a−a−c+ to a−a−a−, respectively, in

Glazer notation [142]. The + (−) superscripts indicate in- (out-of)-phase rota-

tions of adjacent octahedra along a given Cartesian direction. The non-magnetic

Ga3+ cations additionally allow us to eliminate possible contributions of spin

and orbital degrees of freedom for driving the IPT through alternative electronic

mechanisms.

5.2 Calculation details and notation

Our density functional calculations are performed within the local density ap-

proximation (LDA) as implemented in the Vienna Ab initio Simulation Package

(vasp) [182, 183] with the projector augmented wave (PAW) method [13], a

5× 5× 5 Monkhorst-Pack k-point mesh [80] and a 500 eV plane wave cutoff. For

structural relaxations, we relax the atomic positions (forces to be less than 0.1

meV Å−1) and the out-of-plane c-axis lattice constants for the strained films 1.

The principle difference between the ground state orthorhombic Pbnm and

metastable [12 meV per formula unit (f.u.) higher in energy] rhombohedral R3̄c

phases of LaGaO3 is that the GaO6 octahedra rotate in-phase (+) along the

Cartesian z-direction of the Pbnm structure while they rotate out-of-phase (−)

1All strain values are given relative to the hypothetical cubic equilibrium LDA lattice pa-
rameter (3.831 Å)
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about that same direction in the R3̄c structure. Our homoepitaxial bi-axial strain

calculations simulate film growth on a (001)-terminated substrate, we therefore

choose the c+ rotations of the orthorhombic phase to be about the axis perpen-

dicular to the epitaxial plane (Fig. 5.1); this orientation allows us to evaluate the

bi-axial strain effect on the in- versus out-of-phase GaO6 rotations present in the

two phases. Note, the bi-axial constraint preserves the orthorhombic symmetry

in the a−a−c+ phase, however, we designate the epitaxially (e) strained phase as

e-Pbnm to distinguish it from the bulk structure. In contrast, the symmetry of

the bulk rhombohedral phase is lowered to monoclinic (space group C2/c) and

we therefore refer to it as such throughout 2.

5.3 Strain-stabilized structures

We first compute the evolution in the total energy with bi-axial strain for the

e-Pbnm and C2/c structures [Fig. 5.1(a)]. We find that between approximately

−1 to +3% strain, the orthorhombic phase with the a−a−c+ rotation pattern is

more stable than the monoclinic a−a−c− structure. For now we focus on the

monoclinic phases [Fig. 5.1(b)] near 0% strain and explore plausible ways later

to access them. We find an abrupt discontinuity in the first derivative of the

total energy with strain for the monoclinic structure between two states with

the same symmetry denoted as C2/c(1) and C2/c(2). In contrast, we find a

single continuous equation of state when we apply uniform hydrostatic pressure

over ±50 GPa on our bulk reference structures. The evolution in the c/a axial

ratio for these structures is also qualitatively different [Fig. 5.1(c)]. The e-Pbnm

axial ratio continuously decreases with increasing tensile strain (consistent with

2In the monoclinic structures, we follow the convention of constraining the free inter-axial
angle to be that of the fully relaxed rhombohedral structure since it is known to weakly affect
the ground state properties [178, 184].
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Figure 5.1: Evolution of the total energy (a) for the e-Pbnm and C2/c phases
with in- and out-of-phase octahedral rotations (inset) along the z-direction. (b)
Magnified region about the IPT (shaded) between phases C2/c(1) and C2/c(2).
(c) The change in axial ratio with strain shows a discontinuity in the C2/c phase
that is absent in the e-Pbnm structure.

Figure 5.2: Evolution in (a) the GaO6 rotation angles about different directions
relative to the substrate, (b) the octahedral distortion parameter ∆, and (c) the
La displacements about the bulk structures with epitaxial strain.
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elastic theory), whereas in the C2/c structures a sharp discontinuity occurs in the

vicinity of c/a ∼ 1. We find the first-order phase transition occurs at a critical

strain of ∼ 0.18% from intersection of the quadratics fit to the total energies for

each monoclinic phase.

5.3.1 Microscopic structure evolution

To investigate if the C2/c(1) → C2/c(2) transition is indeed isosymmetric, we

evaluate how the internal structural parameters – octhahedral tilts and bond dis-

tortions – evolve with epitaxial strain [Fig. 5.2(a)]. We find a continuous evolution

in the GaO6 rotation angles for the e-Pbnm structures (open symbols): the ro-

tation axis changes from being along the [001]-direction to mainly in-plane along

[110] as the strain state changes from compressive to tensile. In contrast, we find

an abrupt change in the octahedral rotation angles with strain in the monoclinic

phases (filled symbols). We identify that the C2/c(1) and C2/c(2) phases, de-

spite possessing the same symmetry are distinguishable—each is characterized as

having either mainly [110] in-plane or [001] out-of-plane GaO6 octahedra rota-

tions [Fig. 5.2(a)]. Consistent with the orthorhombic case we find that increasing

tensile strain drives the the octahedral rotation axis into the [110]-epitaxial plane.

The bi-axial strain is not solely accommodated by rigid octahedral rotations.

It produces additional deviations in the Ga–O bond lengths and causes La cation

displacements. We quantify the former effect through the octahedral distortion

parameter ∆ = 1
6

∑
n=1,6[(δ(n) − 〈δ〉)/ 〈δ〉]2 , where δ is a Ga–O bond length and

〈δ〉 is the mean bond length in the GaO6 octahedra. With increasing strain, ∆ in-

creases, indicating that bond stretching (and compression) occurs simultaneously

with changes in the magnitude of the octahedral rotation angles to alleviate the

substrate-induced strain [Fig. 5.2(b)]. According to our bond-valence calcula-

tions, the Ga–O bond stretching modifies the “chemical strain” imposed on the



126

over-bonded Ga3+ cations when a regular GaO6 octahedra (∆ → 0) occurs. The

IPT allows the monoclinic phase to maintain a uniform charge density distribu-

tion with the a−a−c− tilt pattern. Note, this chemically over-bonded structure is

absent in the e-Pbnm structure because the a−a−c+ tilt pattern (D2h symmetry)

permits non-uniform Ga–O bonds.

We also show in Fig. 5.2(c) that the La anti-parallel displacements exhibit ad-

ditional anomalous behavior and change sign in monoclinic structure about the

transition region (shaded). This occurs to maintain a trigonal planar configura-

tion, with a nearly uniform charge density, in the cavity created by the different

a−a−c− rotation “senses.” In contrast, the e-Pbnm structures exhibit a single

La cation displacement direction because the octahedral rotation pattern never

reverses.

5.4 Origin of the isosymmetric transition

To identify the origin of the isosymmetric transition, we first analyze the energy

of the monoclinic a−a−c− structures under different bi-axial strain states as a

function of direction and magnitude of the GaO6 octahedron rotation axis. The

direction of the GaO6 rotation axis with the a−a−c− pattern is constrained to be

in the (1̄10)-plane because the rotation pattern can be decomposed into rotations

of the type a−a−c0 and a0a0c− with rotation axes aligned along the [110]- and

[001]-directions [Fig. 5.2(a)]. We show in Fig. 5.3(a-c) our first-principles results

of the energy dependence on the direction (vertical axes) and magnitude (hori-

zontal axes) of the GaO6 rotation axis for strain values of -1.5%, 0.0% and 1.5%,

respectively. For all strain states, we find a single well-defined energy minimum

for each direction of the GaO6 rotation axis, as shown by the dotted lines in

Fig. 5.3(a-c). We therefore are able to remove the rotation angle magnitude as
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a variable and to analyze the energy dependence solely in terms of the bi-axial

strain and the GaO6 rotation axis direction [185].

We show in Fig. 5.3(d) the calculated evolution of the extremal octahedra

rotation axis directions with bi-axial strain. The local energy minima (maxima)

for all strains are indicated with a heavy (broken) black line in Fig. 5.3(d). For

-1.5%, 0.0% and 1.5% bi-axial strains, we additionally indicate the extrema us-

ing symbols both in Fig. 5.3(a-c) and Fig. 5.3(d). Consistent with our earlier

structural analysis (Fig. 5.2), we find that the rotation axis direction smoothly

approaches the [110] ([001]) direction for large tensile (compressive) strains. For

the range of strains between −0.5% and 0.5%, we observe the co-existence of two

energy minima separated by an energy maximum (broken line); this indicates an

inaccessible region of rotation axis directions close to [111] for any value of strain

and is consistent with a first-order transition.

Our results suggest there are two main reasons for the appearance of the

isosymmetric transition in epitaxially strained rhombohedral perovskites. The

first reason is that the octahedral rotations are strongly coupled to the bi-axial

strain. This coupling originates from the rigidity of the GaO6 octahedra, since the

rigidity causes contraction of the crystal lattice in the direction orthogonal to the

rotation axis [186, 187, 188]. The second reason is that the bulk rhombohedral

a−a−a− structure of LaGaO3 is higher in energy than the bulk orthorhombic

a−a−c+ structure.

We now show that the energy ordering of the bulk phases is responsible for the

inaccessible region of rotation axis directions. The a−a−a− and a−a−c+ structures

differ only in the phase of the GaO6 octahedra rotations about the z-axis. For this

reason, each structure can be transformed into the other through a combination

of rigid octahedral distortions. One distortion should deactivate the a− rotation

about the z-axis, while the other would induce the c+ rotation about the same
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Figure 5.3: Calculated energy (a-c) of the monoclinic LaGaO3 phases as a function
of the GaO6 rotation axis direction and angle magnitude at -1.5%, 0.0% and 1.5%
strains, respectively, with energy contours at 5 meV/f.u. and additional contours
close to extremal points at 0.5 meV/f.u. (d) Position of energy minimum (solid
line) or maximum point (broken line) with strain; circles correspond to minima
(a-c), and the cross indicates the saddle point in (b).
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axis. We would expect these distortions to impose minor energetic penalties since

they are nearly rigid 3. In the present case, where the a−a−a− structure is higher

in energy than a−a−c+, we expect that introduction of either of these distortions

into the higher energy a−a−a− structure will lower the total energy 4.

Finally, smoothness of the total energy as a function of strain and rotation

axis direction requires that the difference between the number of energy min-

ima (Nmin) and maxima (Nmax), for any value of bi-axial strain, remains fixed

as elaborated in Morse theory [185]. In other words, any smooth deformation

which produces additional energy maximum must also produce additional energy

minimum. Due to first reason for the IPT mentioned above, we anticipate that

for sufficiently large compressive or tensile strains, the strain–octahedral rota-

tion direction coupling dominates to yield a single energy minimum: Nmin = 1,

Nmax = 0 and then from continuity, Nmin − Nmax = 1 must remain constant for

all strains. From our energetic hierarchy of the bulk structures, we conclude that

when strain induces structural distortions with magnitudes which nearly coincide

with those of the bulk a−a−a− phase (near 0% strain and [111] direction), there

will exist an energy maximum (Nmax = 1); from continuity, this must introduce

two energy minima (Nmin = 2) at the same value of strain. These reasons to-

gether produce the energy landscape shown in Fig. 5.3(d) and require an IPT in

the LaGaO3 system. For comparison, the orthorhombic phase of LaGaO3 does

not show an IPT as one varies bi-axial strain, since the second condition for the

transition described above does not apply, ie. the orthorhombic structure is the

global ground state. Therefore, Nmin is fixed to 1 (Nmax = 0) for all strain values.

3If a change in the a−a−a0 rotation also occurs, so as to keep the total octahedron rotation
angle magnitude nearly constant, the energy penalty is even smaller and fully consistent with
the energy landscape in Fig. 5.3(a-c).

4Indeed, we calculate an unstable phonon at Γ with Eg symmetry (ω = 25i cm−1) and an
unstable phonon at the F -point (ω = 43i cm−1) in the rhombohedral structure corresponding
to these kind of distortions.
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5.5 Accessing and applications of the isosymmet-

ric transition

We first note that we obtain a C2/c → e-Pbmn transition near −1% compres-

sive strain with respect to our hypothetical cubic LaGaO3 phase. In the vicinity

of the IPT at 0 K, however, the e-Pbmn phase is the global ground state. Al-

though our minimal model for the IPT relies on this energetic ordering of the

competing rotational phases (a−a−a− versus a−a−c+), we anticipate three ex-

perimental routes by which to access the essential signature of the isosymmetric

transition—large strain-induced reorientation of the octahedral rotation axis di-

rection. First, the monoclinic phases could be stabilized in thin films through

the substrate coherency effect [189, 190], where the film’s tilt pattern adopts

that of the substrate: Perovskite substrates with the a−a−a− (LaAlO3) or the

a0a0c− (tetragonal-SrTiO3) tilt pattern are promising candidates. Second, addi-

tional electronic degrees of freedom (first- and second-order Jahn-Teller effects),

introduced through cation substitution, could be exploited to stabilize the IPT

because they often energetically compete with the octahedra rotations [178, 191].

The next route to access the monoclinic phases for all strains would be to perform

experiments above the bulk LaGaO3 structural transition temperature (∼ 100◦C).

In this case, the IPT would exhibit a weak-first order transition while still pro-

viding strong strain–octahedral rotation axis direction coupling. At sufficiently

high temperatures, the IPT could be suppressed, making the monoclinc phases

indistinguishable and terminating the IPT boundary at a critical point [192].

5.6 Conclusion

We have shown that strain–octahedral rotation axis directions are strongly cou-

pled in epitaxial perovskite thin films. For this reason, we suggest similar large
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reorientations of coordinating polyhedra frameworks could be achieved in alter-

native structural families: thin films with the garnet, apatite or spinel structures

are particularly promising. However, the functional materials design challenge

remains: how does one couple the rotation axis direction to additional electronic

degrees of freedom? For this reason, we advocate for detailed epitaxial film stud-

ies on perovskites close to the R3̄c ↔ Pnma phase transition (0.96 < τ < 1.01).

Controlling the IPT in LaCrO3, LaNiO3 and LaCuO3 perovskites could yield un-

known, and potentially functional, orbitally-, spin- and charged-ordered phases.
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Chapter 6

Electric polarization in a Chern insulator

We extend the Berry-phase concept of polarization to insulators having a non-zero

value of the Chern invariant. The generalization to such Chern insulators requires

special care because of the partial occupation of chiral edge states. We show how

the integrated bulk current arising from an adiabatic evolution can be related to

a difference of bulk polarizations. We also show how the surface charge can be

related to the bulk polarization, but only with a knowledge of the wavevector at

which the occupancy of the edge state is discontinuous. Furthermore we present

numerical calculations on a model Hamiltonian to provide additional support for

our analytic arguments.

6.1 Introduction and motivation

In 1988 Haldane pointed out that an insulating crystal with broken time-reversal

symmetry may exhibit a quantized Hall conductance even in the absence of a

macroscopic magnetic field [32]. We shall refer to such a material as a “Chern

insulator” (CI) because it necessarily would have a non-zero Chern invariant as-

sociated with its manifold of occupied Bloch states [193, 194]. While no CI has

yet been discovered experimentally, there appears to be no reason why one could

not exist, and theoretical models that behave as CIs are not difficult to construct.
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It seems plausible that the current blossoming of interest in exotic non-collinear

magnets and multiferroics could yield an experimental example before long.

CIs occupy a middle ground between metals and ordinary insulators. Like

metals, their conductivity tensor σαβ is non-zero, their surfaces are metallic (as a

result of topological edge states crossing the Fermi energy), and it is impossible to

construct exponentially localized Wannier functions (WFs) for them [195]. On the

other hand, only the off-diagonal (dissipationless) elements of σαβ can be non-zero,

the chiral edge states decay exponentially into the bulk, the one-particle density

matrix decays exponentially in the interior [196], and the localization measure ΩI

[197, 30] is finite [196] as in other insulators. Overall it appears natural to regard

a CI as an unusual species of insulator, but many aspects of its behavior remain

open to investigation.

As is well known, the electric polarization P is not well-defined in a metal.

For an ordinary insulator, its definition alternatively in terms of Berry phases or

WFs is by now well established [24, 198, 199]. For a CI, the absence of a Wannier

representation removes the possibility of using it to define the polarization, and

we shall show below that there is a fundamental difficulty with the Berry-phase

definition as well. In view of the presence of dissipationless currents and metallic

edge states, one might be tempted to conclude that P is not well-defined at all in a

CI. On the other hand, ΩI is related to the fluctuations of P [31], and the finiteness

of this quantity [196] suggests that the polarization might be well-defined after

all.

The purpose of this chapter is to discuss whether, and in what sense, a defi-

nition of electric polarization is possible in a CI. We demonstrate that the usual

Berry-phase definition does remain viable if it is interpreted with care when con-

necting it to observables such as the internal current that flows in response to an

adiabatic change of the crystal Hamiltonian, or to the surface charge at the edge
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of a bounded sample.

6.2 Results

For the remainder of this chapter we restrict ourselves to the case of a 2D crys-

talline insulator having a single isolated occupied band. The generalization to the

case of a 3D multiband insulator is not difficult, but would complicate the pre-

sentation. We also restrict ourselves to a single-particle Hamiltonian, noting that

the principal difficulties in understanding CIs occur already at the one-particle

level. The lattice vectors a1 and a2 are related to the reciprocal lattice vectors

b1 and b2 in the usual way (bi · aj = 2πδij) and the cell area is S = |a1 × a2|.

The Berry-phase expression for the electric polarization can be written as

P[k0] =
e

(2π)2
Im

∫

[k0]

dk 〈uk|∇k|uk〉 (6.1)

where e is the charge quantum (e > 0), |uk〉 are the cell-periodic Bloch functions,

and [k0] indicates the parallelogram reciprocal-space unit cell with origin at k0

(that is, with vertices k0, k0 + b1, k0 + b1 + b2, and k0 + b2). In an ordinary

insulator one insists on a smooth and periodic choice of gauge (relative phases of

the |uk〉) in Eq. (6.1), and P is well defined (modulo eR/S, where R is a lattice

vector [24]) independent of k0. However, in a CI such a gauge choice is no longer

possible. To see this, we decompose P[k0] = P1a1 + P2a2, k = k1b1 + k2b2, and

k0 = κ1b1 + κ2b2, and rewrite Eq. (6.1) as

P
[κ2]
1 =

−e
S

∫ κ2+1

κ2

dk2
θ1(k2)

2π
, (6.2)

θ1(k2) = −Im

∫ κ1+1

κ1

dk1〈uk1,k2 |∂k1|uk1,k2〉 . (6.3)
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Eq. (6.3) is a Berry phase and is gauge independent modulo 2π (independent of

κ1). This allows us to make an arbitrary choice of branch for θ1(k2 = κ2) and

to insist, as part of the definition of P
[κ2]
1 , that θ1(k2) should remain continuous

as k2 is increased from κ2 to κ2 + 1. Since states at (k1, κ2) and (k1, κ2 + 1) are

equivalent, it follows that

θ1

∣∣∣
κ2+1

κ2

= −2πC (6.4)

where C is an integer. In fact C just defines the Chern number, and the insulator

is a CI if C 6= 0. For simplicity we focus henceforth on a CI having C = ±1.

Using Eqs. (6.2)-(6.3) and similar equations for P2, we have arrived at a defi-

nition P[k0] that is well-defined, modulo eR/S as usual, even for a CI. However,

as illustrated in Fig. 6.1(a),

P[k0+∆k] = P[k0] −
eC

2π
ẑ× ∆k (6.5)

where ẑ is the unit vector along a1 × a2. This dependence on k0 clearly presents

a problem for the interpretation of Eq. (6.2) as a “physical” polarization in the

case of a CI.

However, let us recall how the concept of polarization is used. For a normal

insulator at least [24], the change of polarization during an adiabatic change of

some internal parameter of the system from time ti to tf is given by

∫ tf

ti

dtJ(t) = P
(f)
[k0]

−P
(i)
[k0]

(modulo eR/S) , (6.6)

where J(t) is the cell-averaged adiabatic current flowing in the bulk. A related

statement, connected with the requirement that the charge pumped to the surface

must be consistent with Eq. (6.6), is that the charge on an insulating surface
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Figure 6.1: (a) Sketch of θ1(k2) in a Chern insulator (C = +1). Solid black
and dashed red frames indicate reciprocal-cell origin chosen at κ2 and κ2 + ∆k
respectively. Dotted lines indicate corresponding averages, proportional to P1. (b)
Computed P1(α) and P1(α) for the modified Haldane model, in units of −0.01e/S,
for adiabatic (dashed lines) and thermal (solid line and symbols) filling. See text.

normal to reciprocal vector b1 is [198]

σ = P · b̂1 (modulo e/a2) . (6.7)

Eqs. (6.6) and (6.7) embody the attributes of a useful definition of P. In the

remainder of this chapter, we demonstrate that a generalized definition of P,

having similar attributes, can be given in a CI. We first show that Eq. (6.6)

remains correct, provided that the same k0 (i.e., the same reciprocal-space cell) is

used for P(i) and P(f) in Eq. (6.6). We also show that Eq. (6.7) must be modified

and explain how. We provide numerical tests as well as analytic arguments for

both claims.

We begin by giving two arguments for the correctness of Eq. (6.6) in the CI

case. First, it is straightforward to see that the the contribution to J1(t) can

be computed independently for each k2 [198], with the problem in (k1, t) space

effectively corresponding to that of an ordinary 1D crystal. Thus, the derivation

of Eq. (6.6) given in Ref. [24] goes through unchanged for the CI case. Second, we

note that the expected result is obtained for the special case that the parameter of
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interest is a spatially uniform but time-dependent vector potential A(t). Since a

slow turning on of A(t) causes state uke
ik·r to evolve into uk+(e/~c)Ae

ik·r, it follows

that

P
[A]
[k0]

= P
[A=0]
[k0]

− e2C

hc
ẑ×A . (6.8)

But a time varying vector potential generates an electric field E = (−1/c)dA/dt,

so that J = (Ce2/h)ẑ× E. The transverse conductivity σxy is thus quantized in

units of e2/h, expressing the fact that a CI is a realization of the integer quantum

Hall effect [32].

We further confirm the validity of Eq. (6.6) by numerically testing our pre-

diction on the Haldane model [32], a tight-binding model for spinless electrons

on a honeycomb lattice at half filling with staggered site energies and complex

second-neighbor hoppings chosen so that C=1. Using the notation of Ref. [32],

we adopt parameters t1 = 1, t2 = 1/3, φ = π/4, ∆ = 2/3 and the lattice vectors

a1 = a0(
√

3x̂ + ŷ)/2 and a2 = a0ŷ (so that a1 = a2 = a0). Furthermore, we

modify the first-neighbor hopping t1 → t1(1 +α) on the bonds parallel to a1 + a2

so as to break the threefold rotational symmetry and allow an adiabatic current

to flow as α is varied. The compensating ionic charge is assumed to sit on the

site with lower site energy.

We consider an infinite strip of the Haldane model N1 cells wide and extending

to ±∞ along y, as sketched in the inset of Fig. 6.2. States ψnk2(r) are labeled

by k2, which remains a good quantum number, and an additional index n =

1, ..., 2N1. The dipole moment across the strip, per unit length, is

P1 =
−e
N1S

∫ 1

0

dk2
∑

n∈N (k2)

〈ψnk2|r1|ψnk2〉 , (6.9)

where position vector r is decomposed as r = r1a1 + r2a2 and N (k2) is the set

of occupied states to be discussed shortly. In the limit of large N1, we associate
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the integrated current that flows along x̂ in the interior of the strip during an

adiabatic evolution from α = αi to α = αf with the corresponding change in P1,

since by continuity the charge must arrive at the surface. We then compare this

with the change of P1 evaluated using a single bulk unit cell via Eqs. (6.2)-(6.3)

to validate the theory.

There is a subtlety, however. Neutrality implies that N (k2) contains N1 states,

but which ones? The problem arises because a CI is topologically required to have

chiral metallic edge states. Our ribbon of CI therefore has one band of edge states

along its left (L) edge and one along its right (R) edge (see inset of Fig. 6.2). For

any given α, let k×2 (α) be the value of k2 at which L-edge and R-edge bands cross.

A thermalized filling of the edge states would correspond to the thick black curve

for case αi in Fig. 6.2, where the N1 lowest-energy states are occupied at each k2

and ǫF = ǫ(k×2 ). Defining k∗2 to be the point at which the occupation switches

between L and R edge states, we have k∗2 = k×2 for the thermalized case.

In general k×2 (α) varies with α. However, k∗2 cannot change during an adi-

abatic evolution. Because we want to “measure” the polarization by the charge

that accumulates at the surface, we specify that the adiabatic evolution is fast

compared to the tunneling time between edge states but slow compared to all

other processes, so that electrons cannot scatter between edges. Thus if we ther-

malize the system at αi and then adiabatically carry the system from αi to αf ,

we arrive at the adiabatic filling illustrated by the thick red curve for case αf in

Fig. 6.2.

We thus expect that the change in polarization calculated from the right-hand

side of Eq. (6.6) from the bulk bandstructure using Eqs. (6.1)-(6.3) should match

that given by the change of Eq. (6.9) only if the adiabatic filling is maintained. We

have confirmed this numerically for our modified Haldane model. The polarization

as a function of α calculated using Eq. (6.9) and using the right-hand side of
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Figure 6.2: Sketch of a band structure of a finite ribbon of a Chern insulator. Solid
regions indicate projected bulk bands; thin solid lines are edge states. Black and
red correspond to α = αi and α = αf respectively; corresponding values of k×2
are indicated. Thick lines indicate filling of edge states as dictated by k∗2, chosen
to illustrate system thermalized at αi and then carried adiabatically to αf . Inset:
edge states associated with left (green) and right (blue) surfaces.

Eq. (6.6) is indicated in Fig. 6.1(b) with black and blue dashed lines respectively

1. Eqs. (6.2)-(6.3) were evaluated on a 300 × 300 k-point mesh. Eq. (6.9) was

calculated using five values of N1 ∈ [25, 70] and then extrapolating to infinity,

while the k2 integral was discretized with 5000 k-points. While there is a vertical

offset between these curves that depends on the choice of k0 in Eq. (6.6), the

differences ∆P1 between different α are correct at the level of 10−5. On the other

hand, the results obtained with the thermalized filling in Eq. (6.9), shown by

the solid line in Fig. 6.1(b), are drastically different. These results confirm that

the appropriate comparison is with the adiabatic filling, and provide numerical

confirmation that Eq. (6.6) is indeed satisfied even in a CI.

We now turn to Eq. (6.7). A naive generalization to the CI case might be that

σ = P[k0] · b̂1 (modulo e/a2), but this cannot be correct. First, the left-hand side

should be independent of k0, but the right-hand side is not. Second, the usual

proof for ordinary insulators of the connection between surface charge and bulk

1Note that P1 6= 0 even for α = 0, since ∆ 6= 0 allows for an asymmetric population of the
edge states.
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polarization assumes that the surface is insulating, with the Fermi level lying in

a gap common to both the bulk and surface [198]. When chiral edge states are

present, the surfaces cannot be insulating, so the usual conditions are violated.

To show how Eq. (6.7) can be corrected for the case of a CI, let us again

consider our Haldane-model ribbon at some fixed α. Its surface charge σ can be

calculated from σ = P · b̂1 = (S/a2)P1 with P1 evaluated using Eq. (6.9), but its

value will depend on the the choice of the k∗2 at which the occupation of the edge

state has its discontinuity, so that

σ[k∗
2
] =

−e
N1a2

∫ 1

0

dk2
∑

n∈N

〈ψnk2|r1|ψnk2〉 , (6.10)

where N is the set of N1 occupied states at k2 given the specified k∗2 (i.e., the

choice whether the L or R edge state is included in N flips as k2 passes through

k∗2).

Since the surface charge theorem of Eq. (6.7) for ordinary insulators was

demonstrated via the Wannier representation [198], we take the same approach

here. However, well-localized bulk WFs do not exist in a CI [195], so we focus

instead on “hybrid Wannier functions” (HWFs) [200] in which the Fourier trans-

form from Bloch functions is carried out in the r1 direction only. Thus k2 remains

a good quantum number and the HWF

Wk2(r1, r2) =
√
N1

∫ 1

0

dk1 Ψk1k2(r1, r2) (6.11)

is well localized only in the a1 direction. Using these we can represent the polar-

ization

P
[κ2]
1 =

−e
S

∫ κ2+1

κ2

dk2 ρ
[κ2]
k2

(6.12)

in terms of the HWF center ρ
[κ2]
k2

= 〈Wk2|r1|Wk2〉. We require ρ to be a continuous
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function of k2 ∈ [κ2, κ2 + 1] so as to guarantee a result that is equivalent to

Eqs. (6.1)-(6.3).

To make the connection between Eqs. (6.10) and (6.12), we recast the former

by constructing Wannier-like functions along the a1 direction for the finite-width

strip, starting from the N1×N1 matrix R[k∗
2
]

mn,k2
= 〈ψmk2|r1|ψnk2〉, where m,n ∈ N

as specified by k∗2. The N1 eigenvectors of R[k∗
2
]

k2
correspond to states that are

Bloch-like along r2 but localized along r1, which we refer to as ribbon HWFs, and

the eigenvalues ̺
[k∗

2
]

jk2
locate their centers of charge. Using the basis-independence

of the trace, Eq. (6.10) can now be rewritten as

σ[k∗
2
] =

−e
N1a2

∫ 1

0

dk2
∑

j

̺
[k∗

2
]

jk2
. (6.13)

The similarity between Eqs. (6.12) and (6.13) suggests that these can be con-

nected. Since k2 is a good quantum number, each k2 can be treated independently.

For each k2 we can compare the infinite (bulk) 1D system described by Eq. (6.12)

with the finite (ribbon) 1D system described by Eq. (6.13). The essential ob-

servation is that, in the limit of large N1, the HWF centers ̺jk2 deep inside the

ribbon converge to the bulk ρk2 , modulo an integer [198]. This is illustrated in

Fig. (6.3), where both sets of HWF centers are plotted as a function of k2 for

a ribbon of width N1 = 6. Furthermore, the fact that the occupation of edge

states switches between L and R edge at k∗2 is reflected in the discontinuity of

ribbon HWF centers ̺jk2 at k∗2. On the other hand, the bulk HWF centers ρk2

are chosen to be continuous across k∗2. We can account for this discrepancy either

by including a correction term proportional to (k∗2 − κ2),

σ[k∗
2
] =

1

a2

[
SP

[κ2]
1 + eC(k∗2 − κ2)

]
(mod e/a2) , (6.14)

or by realizing that by the virtue of Eq. (6.5) this is equivalent to shifting the
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Figure 6.3: Black dots show ribbon HWF centers ̺
[k∗

2
]

jk2
and red triangles bulk

HWF centers ρ
[κ2]
k2

and its periodic images as a function of k2. Dashed frame

corresponds to choice of origin at discontinuity in ̺
[k∗

2
]

jk2
, k∗2.

reciprocal space origin to k∗2,

σ[k∗
2
] =

S

a2
P

[k∗
2
]

1 (mod e/a2) , (6.15)

as can be seen from the dashed frame in Fig. 6.3. Eq. (6.14) or (6.15) is the

appropriate generalization of the surface charge theorem, Eq. (6.7), to the case of

a CI, and should be correct in large N1 limit for both thermalized and adiabatic

fillings as long as the appropriate k⋆2 is used.

We have also tested the correctness of this formula using our numerical calcu-

lations on the modified Haldane model. Recall that the solid curve in Fig. 6.1(b)

represents the surface charge as computed from Eq. (6.9) for the thermalized case.

For each α, we first locate k×2 using 1000 k-points on a ribbon of width N1 = 70

and evaluate Eq. (6.15) with k∗2 = k×2 using Eqs. (6.2)-(6.3) on a 250×250 k-point

mesh. The resulting values are plotted as blue dots in Fig. 6.1(b). The agreement

is excellent.
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6.3 Conclusion

In summary, we have generalized the Berry-phase concept of polarization to the

case of a Chern insulator. The integrated current flow during adiabatic evolution

is given by Eq. (6.6), where the reciprocal-space cell must be the same in both

terms on the right-hand side. The surface charge at an edge of a bounded sample

is given by Eq. (6.15), where k∗2 specifies the wavevector at which the occupation

discontinuity occurs in the chiral edge state. These results may be of use in

understanding the physical properties of these topological insulators, and perhaps

in searching for experimental realizations.



145

Chapter 7

Chern-Simons orbital magnetoelectric

coupling in generic insulators

In this chapter we present a Wannier-based method to calculate the Chern-Simons

orbital magnetoelectric coupling in the framework of first-principles density-functional

theory. In view of recent developments in connection with strong Z2 topological

insulators, we anticipate that the Chern-Simons contribution to the magnetoelec-

tric coupling could, in special cases, be as large or larger than the total mag-

netoelectric coupling in known magnetoelectrics like Cr2O3. The results of our

calculations for the ordinary magnetoelectrics Cr2O3, BiFeO3 and GdAlO3 con-

firm that the Chern-Simons contribution is quite small in these cases. On the

other hand, we show that if the spatial inversion and time-reversal symmetries

of the Z2 topological insulator Bi2Se3 are broken by hand, large induced changes

appear in the Chern-Simons magnetoelectric coupling.

7.1 Introduction

In recent years there has been a significant revival of interest in magnetoelectric

effects in solids, as surveyed in several reviews [201, 202, 203, 204]. Potential ap-

plications of these materials have long been discussed [205, 206] in areas ranging
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from the optical manipulation and frequency conversion to magnetoelectric mem-

ories. Of the various quantities that can be discussed, the linear magnetoelectric

coupling tensor αij is clearly of primary interest, as it quantifies the leading-order

term in the coupling at small fields. We define it as

αij =

(
∂Pi

∂Bj

)

E

=

(
∂Mj

∂Ei

)

B

, (7.1)

where Pi is the electric polarization induced by the magnetic field Bj, or equiva-

lently, Mj is the magnetization induced by the electric field Ei. We use SI units

(see Sec. 7.2.1) and the derivatives are to be evaluated at zero electric and mag-

netic field. In the special case that the induced response (P or M) remains

parallel to the applied field (B or E), the tensor α is purely diagonal with equal

diagonal elements, and its strength can be measured by a dimensionless scalar

parameter θ defined via

αiso
ij =

θe2

2πh
δij . (7.2)

More generally, depending on the magnetic point group of the crystal, αij can

have distinct diagonal components as well as non-zero off-diagonal ones.

The linear magnetoelectric response αij can be decomposed into two contri-

butions coming from purely electronic and from ionic responses respectively. The

former is defined as the magnetoelectric response that occurs when atoms are

not allowed to displace in response to the applied field, while the latter is de-

fined as the remaining lattice-mediated response. One generally expects ionic

effects to dominate over electronic responses, as for example was shown recently

in Ref. [207, 208] for the case of Cr2O3. Moreover, each of these components can

be decomposed further into spin and orbital parts, since the magnetization in-

duced by the electric field can be decomposed in that way. Here one would naively

expect that the spin contribution will dominate with respect to the orbital one,
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since orbital moments are usually strongly quenched by crystal fields. Mostly

for this reason, realistic theoretical calculations of magnetoelectric coupling have

been developed [207, 209, 208] only for the spin component.

As shown in Refs. [33] and [34] using two complementary approaches, the or-

bital magnetoelectric polarizability (OMP), defined as the contribution of orbital

currents to the magnetoelectric coupling αij , can be written as the sum of three

gauge-invariant contributions. One of these, first discussed by Qi et al. [28] and

Essin et al. [29], is the Chern-Simons term (CSOMP). Since this contribution is

purely isotropic it contributes only to θ, as in Eq. (7.2). In this chapter we will

focus mostly on the CSOMP component of αij . From an implementation view-

point, the CSOMP component is quite different from the other two components

of the OMP: it can be calculated from a knowledge of the ground-state electron

wavefunctions alone, but only after careful attention is given to the need to choose

a smooth gauge in discretized k-space.

One of the motivations for the current work is the possibility of finding a

material whose CSOMP component of the linear magnetoelectric tensor will be

large compared to the total coupling in known magnetoelectric materials. As

elaborated in more detail in Sec. 7.2, the basis for this possibility arises from the

before-mentioned theoretical developments [210] and the experimental verification

of the existence of Z2 topological insulators such as Bi1−xSbx, Bi2Se3, Bi2Te3 and

Sb2Te3 [45, 46, 47]. Roughly speaking, we seek a material that is similar to a Z2

topological insulator, but having broken inversion and time-reversal symmetries.

In order to take the first steps toward searching for such materials, we have set

out to calculate the CSOMP component of the magnetoelectric tensor in several

compounds of interest using density-functional theory.

This chapter is organized as follows. In Sec. 7.2 we provide theoretical back-

ground by reviewing the previously-derived [33, 34] expression for the α tensor,
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and by discussing the connection between bulk and surface properties in a way

that is analogous to the theory of surface charge and bulk electric polarization.

We also review the connection to Z2 topological insulators and make some general

comments about symmetry. In Sec. 7.3 we discuss the gauge-fixing issues that

arise when discretizing the CSOMP expression on a k-point mesh, and show how

these can be resolved using Wannier-based methods. By this route, we arrive at

an explicit expression for the CSOMP in terms of position matrix elements be-

tween Wannier functions. We evaluate this expression in the density-functional

context for several materials of interest in Sec. 7.4. Finally, we summarize and

give an outlook in Sec. 7.5.

7.2 Background and motivation

In this section we briefly summarize previous work from Refs. [33] and [34] on

the orbital magnetoelectric coupling (OMP), describe relationships between bulk

and surface properties, discuss motivations for this work based on the discovery

of strong Z2 topological insulators, and present a brief symmetry analysis.

7.2.1 Units and conventions

In this chapter we use SI units and define α according to Eq. (7.1) using inde-

pendent field variables E and B. It follows that α has the same units as the

vacuum admittance 1/cµ0 [211]. While this is convenient from the point of view

of first-principles theory, where B is fixed to zero in practice, the more conven-

tional definition in the literature is in terms of fixed E and H fields, in which case

one has

αEH
ij =

(
∂Pi

∂Hj

)

E

= µ0

(
∂Mj

∂Ei

)

H

(7.3)
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and αEH has units of inverse velocity [212]. In the typical case that the magnetic

susceptibility of the material is negligible, these are related by αEH = αµ0, and one

can define a reduced (dimensionless) quantity αr = cµ0α = cαEH [211]. Defined

in this way, αr is numerically equal to the value of the magnetoelectric coupling in

Gaussian units using the conventions of Rivera [212], which in turn corresponds to

the notation “g.u.” (“Gaussian units”) in some recent papers [207, 209]. Further-

more, using the notation of Eq. (7.2) for the isotropic magnetoelectric coupling,

it follows that the diagonal component of αr is just θ/π times the fine structure

constant (which is e2cµ0/2h in SI units).

7.2.2 Theory of orbital magnetoelectric coupling

The purely electronic orbital magnetoelectric coupling αij can be written in terms

of three gauge-invariant contributions

αij = αCS
ij + α̃LC

ij + α̃IC
ij , (7.4)

where αCS
ij = δijα

CS is the above-mentioned (isotropic) CSOMP, while α̃LC
ij and

α̃IC
ij are two additional contributions. The isotropic part of the OMP tensor has

contributions from the two α̃ terms as well as from the CSOMP term. The three

contributions to the OMP can compactly be expressed as

αCS = η
e

2

∫
d3k ǫijk tr

[
Ai∂jAk −

2i

3
AiAjAk

]
, (7.5)

α̃LC
ij = ηǫjklIm

∫
d3k 〈∂̃kunk|(∂lHk)|D̃iunk〉, (7.6)

α̃IC
ij = ηǫjklIm

∫
d3k 〈∂̃kunk|D̃iumk〉〈umk|(∂lHk)|unk〉, (7.7)

where the notations are defined as follows. An implied sum notation applies to

repeated Cartesian (ijkl) and band (mn) indices, corresponding to a trace over
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occupied bands in the latter case (written explicitly as ‘tr’). A common prefactor

η = −e/~(2π)3 appears in each equation, with e > 0 being the magnitude of the

electron charge. The Berry connection

Amnkj = 〈umk|i∂j|unk〉 (7.8)

is defined in terms of the cell-periodic Bloch functions

|unk〉 = e−ik·r|ψnk〉, (7.9)

which are the eigenvectors of Hk = e−ik·rHeik·r, where H is the bulk periodic

Hamiltonian of the crystal at zero electric and magnetic field. ∂j and Dj are the

partial derivatives with respect to the j-th component of the wavevector k and

the electric field E respectively. Finally, the tilde indicates a covariant derivative,

∂̃j = Qk∂j and D̃j = QkDj, where Qk = 1 − |unk〉〈unk| (sum implied over n).

Additional screening contributions to α̃LC
ij and α̃IC

ij that occur in the context of

self-consistent field calculations, not given here, can be found in Ref. [34].

As in the case of electronic polarization, one needs to be careful about relating

the above bulk expressions to experimentally measurable physical quantities, since

arbitrary surface modifications can contribute to the effective measurable OMP.

The relationship between the OMP and experimentally measurable responses are

explained in more detail in the next section.

7.2.3 Relation between bulk and surface properties

In order to discuss the relationship between bulk and surface quantities in connec-

tion with the OMP, it is instructive first to review the corresponding connections

in the theory of electric polarization.
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Electric polarization and surface charge

We first review the relationship between the bulk electric polarization, as obtained

from the crystal bandstructure according to the Berry-phase theory [24, 198], and

a measurable quantity which is the macroscopic dipole moment of a finite sample

cut from this crystal. Given the set of valence Bloch wavefunctions |ψnk〉 of an

insulating crystal, one can readily calculate the electronic contribution to the

polarization as the integral

Pi = − e

(2π)3

∑

n

∫
d3k 〈unk|i∂ki |unk〉 (7.10)

over the Brillouin zone (BZ). Gauge changes (|unk〉 → e−iβ(k)|unk〉) can change

the value of this integral only by Re/Ω, where R is a lattice vector and Ω is the

unit cell volume. The value of this integral is therefore only well-defined modulo

Re/Ω. In what follows we assume that a definite choice of gauge has been made so

that a definite value of P has been established. We now analyze how, and under

what circumstances, one can relate this P to the (experimentally measurable)

dipole moment d of an arbitrarily faceted finite sample of this crystal.

At each local region on the surface of this finite sample, assuming a perfect

surface preparation (defect-free with ideal periodicity), we can relate P to the

surface charge density σ at that same point via [198]

σ =
(
P +

e

Ω
R
)
· n̂+ ∆. (7.11)

Here n̂ is the surface normal unit vector, R is a lattice vector, and ∆ is an

additional contribution present only for metallic surfaces. The term involving

R, which corresponds to an integer number of electrons per surface unit cell, is

required because, for a given surface n̂, it may be possible to prepare the surface
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in different ways (e.g., by adding or subtracting a layer of ions, or by filling or

emptying a surface band) such that the surface charge per cell changes by a

quantum. Thus, R is in general a surface-dependent quantity in Eq. (7.11). If

the surface patch under consideration is not insulating, then ∆ is a term which

measures the contribution of the partially occupied surface bands to the surface

charge, and is proportional to the area fraction of occupied band in k space. (In

the case of an insulator with non-zero first Chern number, this fraction has to

be calculated with special care [4], but we shall not consider this case in what

follows.)

Now, let us consider the special case that all surfaces are insulating (∆ = 0)

and that the surface charges of all surface patches are consistent with a single

vector value of R (“global consistency”). Under these circumstances, the macro-

scopic dipole moment d of the crystallite is given by

d = V
(
P +

e

Ω
R
)
, (7.12)

which can be obtained trivially by integrating Eq. (7.11). Here V is the volume

of entire finite sample. As could be anticipated, d/V has a component depending

only on the bulk wavefunctions and our gauge choice, and an additional compo-

nent eR/Ω reflecting the preparation of the surfaces.

OMP and surface anomalous Hall conductivity

We now discuss a corresponding set of relationships between the bulk-calculated

OMP and the surface anomalous Hall conductivity.

Using Eqs. (7.5), (7.6), and (7.7) one can calculate the tensor α from the

knowledge of bulk Hamiltonian of an insulating crystal. Analogously as in the



153

case of polarization, one can again show that a gauge change 1 must either leave

α invariant or change it by a quantum m(e2/h)I, where m is an integer and I

is the unit matrix. More precisely, this gauge transformation will only affect the

CSOMP component αCS of the OMP, since the other two contributions α̃LC and

α̃IC are fully gauge-invariant (see Ref. [34] for details).

We now imagine cutting a finite crystallite from this infinite crystal, and we

wish to relate α to its physically observable linear magnetoelectric coupling β,

defined for a finite sample by

βij =
∂di
∂Bj

=
∂µj

∂Ei
, (7.13)

where di is the dipole moment of the finite sample and µj is its magnetic dipole

moment. We want to discuss this relationship in a way that is analogous to that

between the bulk P and sample dipole moment d in Sec. 7.2.3.

As follows from Eq. (7.1), the application of an electric field Ej to the insulating

crystal induces the magnetization

Mk = αjkEj, (7.14)

where α is given by Eq. (7.4) and is only determined modulo the quantum

m(e2/h)I. Having a homogeneous Mk inside the sample and Mk = 0 outside

is equivalent to having a surface current Ki equal to

Ki = ǫiklMknl, (7.15)

where nl is the surface unit normal. By eliminating Mk from these equations,

1Here we refer to a multiband gauge transformation having the form of Eq. (7.18), since α

can be shown to be fully invariant under a single-band phase twist.
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we see that having a magnetoelectric tensor α is equivalent to having a surface

anomalous Hall conductivity σAH
ij = ǫiklαjknl. If the surface patch in question

is insulating, then its anomalous Hall conductivity should just be given, modulo

m(e2/h)I, by this equation. If instead the surface patch is metallic, then an

additional surface contribution ∆ij should be present, leading to the relation

σAH
ij = ǫikl

(
αjk +m

e2

h
δjk

)
nl + ∆ij. (7.16)

This equation is in precise analogy to Eq. (7.11) relating the polarization to the

surface charge. Here ∆ij may in general contain dissipative contributions, but in

the dirty limit it will be dominated by the intrinsic surface contribution that can

be calculated as a 2D BZ integral of the Berry curvature of the occupied surface

states [26]. The integer quantum m appearing in Eq. (7.16) corresponds to the

theoretical possibility that the surface preparation can be changed in such a way

that a surface band having a nonzero Chern number may become occupied. For

example, this could be done in principle by constructing a 2D quantum anomalous

Hall layer (as described, e.g., by the Haldane model [32]), straining it to be

commensurate with the surface, and adiabatically turning on hopping matrix

elements to “stitch it” onto the surface.

In the special case that all surface patches are insulating (∆ij = 0), and all

surface patches have an anomalous Hall conductivity given by Eq. (7.16) with the

same value of m (“global consistency”), we can relate the experimentally mea-

surable magnetoelectric response β of the finite crystallite to the bulk-calculated

α via

β = V
(
α +m

e2

h
I

)
, (7.17)

which follows by integrating Eq. (7.16) over all surfaces. This equation is in close

analogy to Eq. (7.12) for the case of electric polarization. In particular, we see
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that β/V has a component α depending only on the bulk wavefunctions and our

gauge choice, and an additional component that is an integer multiple of (e2/h)I,

reflecting the preparation of the surfaces.

As will be discussed in the next section, time-reversal symmetry imposes addi-

tional constraints on α, and some care is needed in the interpretation of Eq. (7.17)

for the case of Z2 topological insulators.

7.2.4 Motivation and relationship to strong Z2 topological

insulators

In this Section, we give arguments to motivate our hope that in certain materials

the CSOMP might be on the order of, or even much larger than, the total mag-

netoelectric coupling in typical known magnetoelectric materials. For simplicity,

we focus henceforth only on the CSOMP part of the total OMP response, even

though there are additional contributions coming from α̃LC and α̃IC. Thus, from

now on, the quantity θ measures the strength of the CSOMP through the relation

αCS = θe2/2πh.

Time-reversal symmetry constraints on θ

Let us analyze the allowed values of θ for an infinite bulk insulating system that

respects time-reversal (T ) symmetry. Since T flips the sign of the magnetic field,

it will also reverse the sign of θ. As mentioned earlier in Sec. 7.2.3, however,

the value of θ can be changed by 2π under a gauge transformation. Therefore

one concludes [28, 29] that the allowed values of θ consistent with T symmetry

are 0 and π (each modulo 2π), and that these two cases provide a topological

classification of all T -invariant insulators. Indeed, this classification has been

shown [28, 29] to be identical to the one based on the Z2 index, with Z2-odd or

“strong topological” insulators having θ = π, while Z2-even or “normal” insulators
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(a) (b)

Vacuum Vacuum

Z2 Z2

Figure 7.1: Identical samples cut from a strong Z2 topological insulator, but
with two different surface preparations. (a) Time-reversal symmetry is preserved
at vacuum-terminated surfaces; the net magnetoelectric coupling of this sample
is zero. (b) Time-reversal symmetry is broken at the surface as a result of ex-
change coupling to an insulating ferromagnetic adlayer; if this opens a gap in the
surface-state spectrum, the entire sample will behave as if it has a magnetoelectric
coupling of exactly θ = π.

have θ = 0, even though the Z2 index is most often introduced in a different

context [36]. (Incidentally, α̃LC = α̃IC = 0 in both cases since these terms are

fully gauge-independent, unlike the CSOMP term which can be changed by 2π.)

Consider now a finite sample of a normal (Z2-even) T -symmetric insulator

(θ = 0 in the bulk) with insulating surfaces (∆ij = 0) prepared in a way that the

integer m is nonzero, and the same on every surface. From Eq. (7.17) we conclude

that this sample will have a non-zero magnetoelectric response, β, proportional

to m. Obviously a sample that has T symmetry both in the bulk and on the

surface must have β = 0, and therefore we conclude that this system needs to

have broken T reversal symmetry at the surface. As mentioned earlier, one could,

at least formally, prepare such a surface by starting from the one that has m = 0

and then absorbing to each surface a layer of anomalous Hall insulator [32] with

Chern index m. Such a procedure will keep the surfaces insulating but it will

necessarily break the T -reversal symmetry.

Next we analyze the case of a strong Z2 topological insulator having θ = π, or

equivalently, α = αCS = (e2/2h) I. We first consider a sample of such a system
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that has T symmetry conserved at its surfaces, as in Fig. 7.1(a). Again, since

the entire sample is T -symmetric, its experimentally measurable magnetoelectric

coupling tensor β clearly has to vanish. Using Eq. (7.16) and the fact that m

can take on only integer, and not half-integer, values, we conclude that the only

way to make the response of the entire sample vanish is to have ∆ij be non-zero.

This requires that the surfaces of such a system must be metallic. Moreover,

since the contribution ∆ij of the metallic surface band to the surface anomalous

Hall conductivity is just given by the Berry phase around the Fermi loop [26],

the needed cancellation requires this Berry phase to be exactly ±π. All this

is in precise accord with the known properties of Z2-odd insulators and their

topologically protected surface states [36].

The Kramers degeneracy at the Dirac cone in the surface bandstructure can

be removed by the application of a T -breaking perturbation to the surface. In

principle, this could be accomplished, for example, by applying a local magnetic

field to the surface or by interfacing the surface to an insulating magnetic over-

layer. In the latter case, the interatomic exchange couplings provide a kind of

effective magnetic field acting on the surface layer of the topological insulator. If

the local Fermi level resides in the gap opened by field, then the surface becomes

insulating. If the field can be consistently oriented (see Ref. [28]) on each patch of

the surface, either along or opposite the direction of surface normal vector n (as

shown in Fig. 7.1(b)), then the entire surface becomes insulating. It is important

that the field is applied consistently in the same direction with respect to n, since

conducting channels will otherwise appear at domain boundaries [36].

If all of these requirements are met, the surface contribution ∆ij to β vanishes,

so that β = Vα with α given only by bulk value of θ = π (assuming m = 0 for

simplicity). Therefore such a sample of a strong Z2 topological insulator would

behave as if the entire sample has exactly half a quantum of magnetoelectric
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coupling (θ = π), even though its bulk is time-reversal symmetric!

Prospects for large-θ materials

Recently surface-sensitive ARPES measurements have experimentally confirmed

that several compounds [45, 46, 47], including Bi1−xSbx, Bi2Se3, Bi2Te3 and

Sb2Te3, do indeed behave as strong Z2 topological insulators. Therefore their bulk

wavefunctions must be characterized by θ = π. Up to now, the corresponding

magnetoelectric response has not been measured experimentally, in part because

of the difficulties in obtaining truly insulating behavior in the bulk, as well as the

need to gap the surfaces by putting them in contact with magnetic overlayers as

described earlier.

We believe that a more promising approach to observing a large CSOMP

(i.e., θ comparable to π) is to consider an insulator that has neither T nor spatial

inversion symmetry. In this case the Z2 classification does not apply, and the

surface can be gapped without any need to apply a T -breaking perturbation. (A

more precise statement of the symmetry considerations will be given in Sec. 7.2.5.)

The sample can then display a bulk magnetoelectric coupling of the simple form

β = Vα. We note that an orbital magnetoelectric coupling of θ ≃ π (i.e., αr ≃

1/137) would correspond to αEH ≃ 24.3 ps/m, a value that is significantly larger

than the observed coupling in Cr2O3, one of the best-studied magnetoelectric

materials. For comparison, the reported experimental values for αEH
⊥ in Cr2O3,

which are presumably dominated by spin-lattice coupling, range between 0.7 and

1.6 ps/m at 4.2 K [213, 214].

Of course, in order to have a good chance of finding a material with a large

θ, it may be advisable to look for materials with some of the same characteristics

as the known Z2-odd insulators, of which the most important is probably the

presence of heavy atoms with strong spin-orbit coupling. We see no strong reason
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Figure 7.2: Schematic view of the allowable values of θ in different parts of the
two-parameter space of some unspecified model Hamiltonian. Horizontal axis
corresponds to the perturbation that preserves at least one of the symmetries that
render θ to be 0 or π (see Sec. 7.2.5). Vertical axis parameterizes a perturbation
that breaks those symmetries and allows θ to be arbitrary. See text for the details.

why such a search might not reveal a material having a large OMP in the above

sense.

To illustrate the kind of a search we have in mind, consider some model

Hamiltonian that depends on two parameters, one that preserves either the T

or spatial inversion symmetry (or both), and another that that breaks symmetry

such that θ takes a generic value. The possible behavior of such a model is

sketched in Fig. 7.2, where these two parameters are plotted along the horizontal

and vertical axes respectively. The figure also indicates the generic value of θ

in each region of parameter space. Along the horizontal axis, where the extra

symmetry is present, three regions are indicated. The black dot indicates a point

of gap closure forming the boundary between a normal T -symmetric insulator

regime on the left (θ = 0) and a strong Z2 topological insulator regime on the

right (θ = π). If the system is carried along the horizontal axis, θ must be either 0

or π except at the critical point, and it must therefore jump discontinuously when

passing through this point of metallic behavior. On the other hand, if we now

imagine passing from the Z2-odd to the Z2-even phase along the dashed curve
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in Fig. 7.2, θ can vary smoothly and continuously from π to 0 without any gap

closure anywhere along the path. If we can identify a material lying near, but

not at, the right end of this dashed path, it could be the kind of large-θ material

we seek.

Thus, our ultimate goal is to use first-principles calculations to search for a

large θ, not in a topological insulator, but in an “ordinary” (but presumably

strongly spin-orbit coupled) insulating magnetic material. While our work has

yet to result in the identification of a large-θ material of this kind, it represents a

first step in the desired direction.

7.2.5 General symmetry considerations

Recall that θ is a pseudoscalar that changes sign under time-reversal and spatial-

inversion symmetries (since B changes sign under T while E changes sign under

inversion). On the other hand, θ is invariant under any translation or proper

rotation of a crystal. Therefore if the magnetic point group of a crystal contains

an element that involves T , possibly combined with a proper rotation, the value of

θ is constrained to be 0 or π (modulo 2π) as discussed earlier. The same happens

if the magnetic point group contains inversion symmetry or any other improper

rotation.

All 32 of the 122 magnetic point groups that do not contain such symmetry

elements, and which therefore allow for an arbitrary value of θ, are listed in

Table 7.1. (The bold entries in the table are those magnetic groups for which the

tensor α must be isotropic, i.e., a constant times the identity matrix; the same

magnetic groups were also analyzed in Ref. [211]). Clearly we can constrain our

search for interesting materials to the cases listed in the Table.
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Table 7.1: Magnetic point groups for which a generic non-zero CSOMP is allowed
by symmetry. Notation follows Ref. [215]. Point groups in bold allow only for a
purely isotropic magnetoelectric tensor.

1 1̄′ 2 m′ 2/m′ 222 m′m′2

m′m′m′ 4 4̄′ 4/m′ 3 3̄′ 6

6̄′ 6/m′ 422 4m′m′ 4̄′2m′ 4/m′m′m′ 32

3m′ 3̄′m′ 622 6m′m′ 6̄′m′2 6/m′m′m′

23 m′3 432 4̄′3m′ m′3m′

7.3 Methods

In this section we present our methods for calculating the CSOMP in the frame-

work of density-functional theory, and analyze in more detail its mathematical

properties and the formal similarities to the formulas used to calculate electric

polarization and anomalous Hall conductivity.

7.3.1 Review of Berry formalism

Assume we are given the Bloch wavefunctions |ψnk〉 = eik·r|unk〉 as a function of

wavevector k in the d-dimensional BZ (d = 1, 2, or 3) for an insulator having

valence bands indexed by n ∈ {1, . . . , N}. We work with the cell-periodic Bloch

functions unk(r) = e−ik·rψnk(r) and allow them to be mixed at each k point by

an arbitrary k-dependent unitary matrix

|unk〉 → |umk〉Umnk (7.18)

(sum on m implied). After this gauge transformation the wavefunctions are no

longer eigenfunctions of the Hamiltonian, but they span the same N -dimensional

subset of the Hilbert space as the true eigenfunctions. For any given choice of
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gauge, we define the Berry connection

Amnkj = 〈umk|i
∂

∂kj
|unk〉, (7.19)

which is a k-dependent N × N × d matrix that measures, at each k point, the

infinitesimal phase difference between the m-th and n-th wavefunctions associated

with neighboring points along Cartesian direction j in k space. This object was

already briefly introduced in Eq. (7.8).

In the context of electronic structure calculations, we can now list three ma-

terial properties that can be evaluated knowing only the Berry connection: the

electric polarization, the intrinsic anomalous Hall conductivity, and the CSOMP.

The electric polarization P already appears in dimension d = 1 and it can be

evaluated as an integral of the Berry connection over the one-dimensional BZ as

[24]

P = − e

2π

∫

BZ

dk trAk, (7.20)

where the trace is performed over the band indices of the Berry connection, as in

Eq. (7.10). The integrand is also referred to as the Chern-Simons 1-form, and its

integral over the BZ is well known to be defined only modulo 2π. Any periodic

adiabatic evolution of the Hamiltonian H(λ) whose first Chern number in (k, λ)

space is non-zero will change the integral above by a multiple of 2π [24].

Unlike one-dimensional systems, crystals in d = 2 can have an anomalous

Hall conductivity. For a metal, the intrinsic contribution from a band crossing

the Fermi level can be evaluated as a line integral [26, 27]

σAH =
e2

h

1

2π

∮

FL

dk ·Ak (7.21)
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(a) (b) (c)

P ∼
∫
A σAH ∼

∮
A θ ∼

∫
Ai∂jAk

Figure 7.3: Graphical interpretation of Eqs. (7.20) (a), (7.21) (b) and (7.22) (c)
in the case of one occupied electron band and for cubic crystal symmetry, for
simplicity. See text for more detail.

over the Fermi loop. Fully-filled deeper bands can also make a quantized con-

tribution given by a similar integral, but around the entire BZ; this is the only

contribution in the case of a quantum anomalous Hall insulator [32]. (In both

cases, the gauge choice on the boundary of the region should be consistent with a

continuous, but not necessarily k-periodic, gauge in its interior; alternatively, each

expression can be converted to an area integral of a Berry curvature to resolve

any uncertainty about branch choice. See Ref. [216] for more details.)

Finally, unlike one- or two-dimensional systems, three-dimensional systems

can have an isotropic magnetoelectric coupling. The CSOMP can be evaluated

in d = 3 as a BZ integration of a quantity involving the Berry connection:

θ = − 1

4π

∫

BZ

d3kǫijktr

[
Ai∂jAk −

2i

3
AiAjAk

]
. (7.22)

The integrand in this expression is known as the Chern-Simons 3-form, and its

integral over the entire BZ is again ill-defined modulo 2π, since any periodic

adiabatic evolution of the Hamiltonian H(λ) whose second Chern number in (k, λ)

space is non-zero will change θ by an integer multiple of 2π [28, 29].

The sketches in Fig. 7.3 compare the geometrical characters of the operations

needed to evaluate Eqs. (7.20)-(7.22) in practice. We consider the case of one

occupied electron band for simplicity. The polarization of Eq. (7.20) is calculated

by a line integral; on a discrete k-mesh, the integral of the Berry connection A
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over each of line segment, as in Fig. 7.3(a), is converted to a discretized form

(see Eq. (7.23)). Similarly, in two dimensions the anomalous Hall conductivity of

Eq. (7.21) can be calculated as suggested in Fig. 7.3(b) by dividing the occupied

part of the BZ into small square segments and then integrating A around each

square. (Equivalently, one can integrate A along the Fermi loop [216].) In three

dimensions, Fig. 7.3(c), Eq. (7.22) can be evaluated by dividing the BZ into small

cubes. In each, one needs to multiply the integral of A along one of the Cartesian

directions (as in Eq. (7.20)) with the integral of Berry connection in the square

orthogonal to that direction (as in Eq. (7.21)), followed by a symmetrization over

the three Cartesian directions.

7.3.2 Numerical evaluation of θ

In electronic-structure calculations, the cell-periodic wavefunctions |unk〉 are typi-

cally calculated on a uniform k-space grid with no special gauge choice; in general,

one should assume that the phases have been randomly assigned. Nevertheless,

it is straightforward to construct a gauge-invariant polarization formula that is

immune to this kind of scrambling of the gauge [30]. In one dimension with kj

for j ∈ {1, . . . ,M} (where kM is the periodic image of point k1), the electronic

polarization is calculated as

P =
e

2π
Im ln det

[
Mk1k2Mk2k3 ...MkM−1kM

]
(7.23)

where the overlap matrix Mkk′ is defined as

[Mkk′ ]mn = 〈umk|unk′〉. (7.24)
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The reason for using Eq. (7.23) is that the determinant of the matrix

Mk1k2Mk2k3 ...MkM−1kM

is gauge-invariant under any transformation in the form of Eq. (7.18). Addi-

tionally, the implementation of Eq. (7.23) is numerically stable even when there

are band crossings. A similar gauge-invariant discretization can also be used to

calculate the anomalous Hall conductivity σAH [216].

Unfortunately, except in the single-band (“Abelian”) case, we are unaware

of any corresponding gauge-invariant discretized formula for the integral of the

Chern-Simons 3-form. As a result, we have no prescription for computing the

CSOMP that is exactly gauge-invariant for a given choice of k mesh. This is a

serious problem. Unlike the calculation of the polarization, which is straightfor-

ward even if the gauge is randomly scrambled at each mesh point, the calculation

of the CSOMP requires that we first identify a reasonably smooth gauge on the

discrete mesh.

The problem of finding a smooth gauge in k is essentially the same as that of

finding well-localized Wannier functions. For this reason, we have adopted here

the approach of first constructing a Wannier representation for the valence bands,

and then using it to compute the CSOMP. In fact, starting from Eq. (7.22),

we derive an expression that allows us to compute θ directly in the Wannier

representation. Once we have well-localized Wannier functions, this guarantees

smoothness of the gauge and avoids problems with band crossings. Admittedly,

such a formula still depends on the gauge choice, meaning that different choices of

Wannier functions will lead to slightly different results. However, this difference

will vanish as one increases the density of the k-point mesh, since in the continuum

limit the k-space expression for θ is gauge-invariant (modulo 2π). More precisely,
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we expect the calculation of θ to converge once the inverse of the k-point mesh

spacing becomes much larger than the spread of the Wannier functions.

Therefore, we adopt the strategy of calculating θ on k meshes of different

density, and extrapolating θ to the limit of an infinitely dense mesh. Furthermore,

we construct maximally-localized Wannier functions (MLWF) following Ref. [30],

expecting this to give relatively rapid convergence as a function of the k mesh

density.

Recall that the Wannier function associated with (generalized) band index n

in unit cell R is defined in terms of the rotated Bloch states (7.18) as

|Rn〉 =
Ω

(2π)3

∫
d3k eik·(r−R)|umk〉Umnk. (7.25)

In the case of MLWFs, the Umnk are chosen in such a way that the total quadratic

spread of the Wannier function is minimized [30]. (In practice the BZ integral is

replaced by a summation over a uniform grid of k points.)

Using Eq. (7.25), one can relate the Berry-connection matrix Amnkj in the

smooth gauge to the Wannier matrix elements of the position operator through [30].

Amnkj =
∑

R

eik·R〈0m|rj|Rn〉. (7.26)

Replacing each occurrence of Aj in Eq. (7.22) with the above gives, after some

algebra,

θ =
1

4π

(2π)3

Ω
ǫijkIm

[
1

3

∑

R

〈0m|ri|Rn〉〈Rn|rj|0m〉Rk

− 2

3

∑

RP

〈0l|ri|Rm〉〈Rm|rj|Pn〉〈Pn|rk|0l〉
]
, (7.27)

where the sum is implied over band (lmn) and Cartesian (ijk) indices. (Even
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though Eq. (7.22) and Eq. (7.27) are equivalent as a whole, they do not match

term by term.)

To obtain a more symmetric form, we introduce a modified position-operator

matrix element between WFs defined as

〈Rm|r̃i|Pn〉 = 〈Rm|ri|Pn〉 (1 − δmnδRP) (7.28)

and a notation for the Wannier center

τni = 〈0n|ri|0n〉. (7.29)

Then Eq. (7.27) becomes

θ =
1

4π

(2π)3

Ω
ǫijk × (7.30)

Im

[∑

R

〈0m|r̃i|Rn〉〈Rn|r̃j|0m〉 (Rk + τnk − τmk)

−
∑

RP

2

3
〈0l|r̃i|Rm〉〈Rm|r̃j|Pn〉〈Pn|r̃k|0l〉

]
. (7.31)

We find this form more convenient because it separates the contributions of diago-

nal and off-diagonal elements of position operators. (It is also manifestly invariant

to the reassignment of a Wannier function to a neighboring cell. Furthermore,

note that while Eqs. (7.22), (7.27), and (7.31) are all equivalent as a whole, the di-

vision of contributions between the first and second term is different in each case.)

The validity of Eqs. (7.27) and (7.31) has been tested numerically by comparing

with the evaluation of Eq. (7.22) for the case of a tight-binding model introduced

in Ref. [34]. The evaluated expressions agreed to numerical accuracy after ex-

trapolation to the infinitely dense mesh. These expressions can also be shown to

be gauge-invariant by working directly within the Wannier representation.
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7.3.3 Computational details

Calculations of the electronic ground state and of structural relaxations were per-

formed using the Quantum-ESPRESSO package [143], and the Wannier90

code [217] was used for constructing maximally localized Wannier functions. We

used radial-grid discretized HGH [218] norm-conserving pseudopotentials. Calcu-

lations were performed in the noncollinear spin framework. Quantum-ESPRESSO

incorporates the spin-orbit interaction at the level of the pseudopotentials, which

is a good approximation since the relativistic effects arise predominantly from the

core region. The pseudopotentials used for Cr, Fe and Gd contain semi-core states

in the valence, while the ones for Al, Bi, Se and O do not. In all calculations we

used the Perdew-Wang [219] LDA energy functional.

The self-consistent calculations on Cr2O3 were performed on a 4 × 4 × 4

Monkhorst-Pack [80] grid in k space. Non-self-consistent calculations for the

Wannier-function construction were performed on k-space grids containing the

origin and ranging in size from 6× 6× 6 to 12× 12× 12. The plane-wave energy

cutoff was chosen to be 150 Ry.

In the case of Bi2Se3, the self-consistent calculations were performed on a

6×6×6 grid with energy cutoff of 60 Ry, while the non-selfconsistent calculation

was done on grids between 6 × 6 × 6 and 11 × 11 × 11.

The position-operator matrix elements 〈0m|rj|Rn〉 needed to evaluate Eq. (7.31)

were calculated in k space by inverting the Fourier sum in Eq. (7.26) over the non-

self-consistent k-point mesh, and then approximating the k derivative in Eq. (7.19)

by finite differences on that mesh, as detailed in Ref. [27].
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7.4 Results and discussion

7.4.1 Conventional magnetoelectrics

In this section we present the results of our first-principles electronic-structure

calculations of θ. We begin with conventional magnetoelectrics, i.e., materials

that are already experimentally known to have a non-zero magnetoelectric tensor.

Some of these materials do not allow all diagonal components of the magnetoelec-

tric tensor to be non-zero. We omit those materials from our analysis here, since

we are interested in calculating the CSOMP part of the magnetoelectric coupling,

which would vanish in such cases. We first present our results on Cr2O3 in some

detail, and then briefly discuss our results for BiFeO3 and GdAlO3.

Calculation of θ in Cr2O3

We first fully relax the structure in the R3̄c space group and obtain the Wyckoff

position to be x = 0.1575 for Cr atoms (4c orbit) and x = −0.0690 for O (6e

orbit). The length of the rhombohedral lattice vector is a = 5.3221 Å while the

rhombohedral angle is 53.01◦. The Cr atoms have magnetic moments pointing

along the rhombohedral axis as illustrated in Fig. 7.4(a) in an antiferromagnetic

arrangement. The value of the magnetic moment is 2.0µB per Cr atom and the

electronic gap is 1.3 eV, which agrees well with previous LDA+U calculations

[220, 221] in the limit where the on-site Coulomb parameter U is set to zero.

Neglecting for a moment the magnetic spins on the Cr sites, the space-group

generators are a three-fold rotation, a two-fold rotation, and an inversion symme-

try as indicated in Fig. 7.4(a). Its point group is therefore 3̄m. If we now include

the spins on the Cr atoms in the analysis, we find that the three-fold and two-fold

rotations remain, while the inversion becomes a symmetry only when combined
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Figure 7.4: (a) Rhombohedral unit cell of Cr2O3. Magnetic moments on Cr atoms
are indicated by red arrows and oxygen octahedra are drawn around each Cr atom.
(b) Schematic of hexagonal unit cell of Bi2Se3 with imposed local Zeeman field
on Bi atoms. Induced magnetic moments are shown by red arrows. Thick blue
lines indicate Se layers; letters (ABC) indicate stacking sequence of the hexagonal
layers. In both panels, the vertical line indicates the 3-fold rhombohedral axis,
and the cross designates a 2-fold rotation axis orthogonal to the plane of the figure
(also a center of inversion coupled with time reversal).



171

Figure 7.5: Calculated value of θ in Cr2O3 for varying densities of k-space grids,
where ∆k is the nearest-neighbor distance on the grid. Top axis specifies the size
of the corresponding uniform Monkhorst-Pack grid. Line indicates a quadratic
extrapolation of θ to the infinitely dense k mesh.

with time-reversal. Therefore the magnetic point group of Cr2O3 is 3̄′m′. 2 This

magnetic point group allows θ to be different from 0 or π, as discussed in Sec. 7.2.5.

Figure 7.5 shows the calculated values of θ using Eq. (7.31) for Cr2O3 with k-

space meshes of various densities. The line indicates the second-order polynomial

extrapolation to an infinitely dense mesh. The extrapolated value of θ is 1.3×10−3,

which is a small fraction of the quantum of OMP θ = 2π and corresponds to

αEH
xx = αEH

yy = αEH
zz = 0.01 ps/m. The positive sign of θ pertains to the pattern

of Cr magnetic moments shown in Fig. 7.4(a); reversal of all magnetic moments

would flip the sign of θ.

In order to compare this purely isotropic component of the magnetoelectric

coupling with experimental values and other theoretical calculations of the full

magnetoelectric response, which is not entirely isotropic, we somewhat arbitrarily

define

αeff =
|αxx| + |αyy| + |αzz|

3
. (7.32)

2Throughout the chapter, the notation for magnetic point groups follows Ref. [215].
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The value of αeff obtained from the results of Ref. [208] is 0.23 ps/m for the

purely electronic part of the spin-mediated component. Therefore, our calculated

CSOMP contribution in Cr2O3 amounts to only 4% of this electronic spin compo-

nent. The ionic component of the spin response calculated by the same authors

results in αeff = 0.74 ps/m, while the one calculated in Ref. [207] is about 2.6

times smaller, 0.29 ps/m. (In both of these calculations, αzz is zero.) Finally,

experimental measurements of the magnetoelectric tensor in Cr2O3 at 4.2 K vary

between αeff = 0.55 ps/m and 1.17 ps/m (see Refs. [213] and [214] respectively).

Clearly, our computed CSOMP contribution for Cr2O3 is negligible, being two

orders of magnitude smaller than the dominant lattice-mediated spin contribu-

tion. This is probably not surprising, since the spin-orbit coupling is relatively

weak in this material. Given that it is weak, we can guess that that magnitude

of the CSOMP should be linear in the strength of the spin-orbit interaction in

Cr2O3. Our calculations allow us to check this by varying the spin-orbit inter-

action strength λSO between 0 (no spin orbit) and 1 (full spin-orbit interaction).

As shown in Fig. 7.6, if we calculate θ for various intermediate values of λSO, we

see that the CSOMP does indeed depend roughly linearly on λSO.

Other conventional magnetoelectrics

We have also carried out calculations of θ in BiFeO3 and GdAlO3, but with a

smaller number of k-point grids than in the case of Cr2O3. Therefore, our results

are less accurate, but should still give a correct order-of-magnitude estimate of θ.

For BiFeO3 we perform the calculation in the 10-atom antiferromagnetic unit

cell (the long-wavelength spin spiral was suppressed). We obtain an electronic

band gap of 0.95 eV with magnetic moments of 3.5µB on each Fe atom, and with

a net magnetization of 0.1µB per 10-atom primitive unit cell due to the canting of

the Fe magnetic moments. Extrapolating θ to an infinitely dense mesh using just
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Figure 7.6: Calculated θ in Cr2O3 as a function of spin-orbit coupling strength,
scaled such that λSO = 1 corresponds to the full spin-orbit coupling strength and
θ0 = θ(λSO = 1).

6 × 6 × 6 and 8 × 8 × 8 k-point meshes, we obtain θ = 0.9 × 10−4. In the case of

GdAlO3 we calculate the electronic band gap to be 5.0 eV and the Gd magnetic

moment to be 6.7µB. We obtain a value of θ = 1.1 × 10−4 after extrapolating

calculations using 4 × 4 × 4 and 6 × 6 × 6 k-space meshes. Thus, it is clear that

the CSOMP is very small in both materials.

7.4.2 Strong Z2 topological insulators

We now investigate the CSOMP in the case of Bi2Se3, which is known experimen-

tally [47] and theoretically [222] to belong to the class of strong Z2 topological

insulators. In the absence of broken T symmetry, such a material should have a θ

of exactly π (modulo 2π). We first confirm this numerically. Then, in Sec. (7.4.3),

we also study what happens when T is broken artificially by inducing antiferro-

magnetic order on the Bi atoms and tracking the resulting variation of θ.

Bi2Se3 is known to belong to space group R3̄m, with Bi at a 2c site and Se at

the high-symmetry 1a site as well as at a 2c site. In our calculations we find that

the Wyckoff parameters for Bi and Se are x = 0.4013 and 0.2085 respectively. We
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also find the length of the rhombohedral lattice vector to be a = 9.5677 Å and

the rhombohedral angle to be only 24.77◦. The electronic gap is calculated to be

0.4 eV.

The generators of the R3̄m space group are again three-fold and two-fold

rotations and inversion (point group 3̄m). Since the system is nonmagnetic, the

magnetic space group also contains the T symmetry operator, and its magnetic

point group is 3̄m1′. According to the analysis given in Sec. 7.2.5, it is clear that

θ must therefore be zero or π (modulo 2π).

Since we know that Bi2Se3 is a strong Z2 topological insulator, we expect that

θ should be equal to π (modulo 2π). However, special care needs to be taken in

order to evaluate θ in such a case, because the choice of a smooth gauge becomes

problematic. Specifically, it is known that the Z2 topology presents an obstruction

to the construction of a Wannier representation (or equivalently, a smooth gauge

in k space) that respects T symmetry [223, 224]. Therefore, during the maximal

localization procedure, one needs to choose trial Wannier functions that do not

take the form of Kramers pairs, thereby explicitly breaking the T symmetry [225].

(It is important to note that this choice of Wannier functions does not bias our

calculation towards having θ = π, since the same starting choice of T -symmetry-

broken Wannier functions for a normal T -symmetric insulator would result in

θ = 0 up to the numerical accuracy of the calculation.)

Our results for θ in Bi2Se3 are given in Fig. 7.7 for various densities of k meshes,

ranging from 6 × 6 × 6 to 11 × 11 × 11. A quadratic polynomial extrapolation to

the infinitely dense mesh limit gives θ = 1.07π. This is in reasonable agreement

with the expected value of θ = π, given the uncertainties in the extrapolation.

(Of course, if we make a time-reversed choice of starting Wannier functions, we

obtain θ = −1.07π, which is consistent, within the errors, with θ = −π and

modulo 2π to θ = π.) Clearly the convergence with respect to mesh density is
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Figure 7.7: Calculated value of θ in Bi2Se3 for varying densities of k-space grids,
where ∆k is the nearest-neighbor distance on the grid. Top axis specifies the size
of the corresponding uniform Monkhorst-Pack grid. Line indicates a quadratic
extrapolation of θ to the infinitely dense k mesh.

somewhat slow, making a precise extrapolation difficult. The reasons for this,

and some possible paths to improvement, will be discussed in Sec. 7.5.

7.4.3 Z2-derived nontopological insulators with broken sym-

metries

Even though θ = π in Bi2Se3, a finite sample with T symmetry preserved every-

where, including at the surfaces, will not exhibit any magnetoelectric coupling.

From the point of view of the discussion in Sec. 7.2.4, this happens because of an

exact cancellation between θ = ±π contributions coming from the bulk (α) and

metallic surface (∆) terms in Eq. (7.16). However, if one breaks the T symmetry

in the bulk (and possibly some other bulk symmetries, as detailed in Sec. 7.2.5),

the CSOMP term can become allowed.

The magnetic space group of Bi2Se3 contains both T and spatial inversion

symmetries. The presence of either by itself is enough to insure that θ = 0 or π

(modulo 2π). Now let us consider turning on, “by hand,” a local Zeeman field on

each Bi atom in the staggered arrangement shown in Fig. 7.4(b), i.e., with fields
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Figure 7.8: Calculated value of θ (vertical axis) and induced magnetic moment
on the Bi atom (horizontal axis) for Bi2Se3 with artificially applied staggered
Zeeman field on Bi atoms, as described in the text. θ0 is the value of CSOMP
when magnetic field is not present.

oriented parallel to the rhombohedral axis and alternating in sign. The induced

magnetic moments along the three-fold axis preserve both three-fold and two-fold

rotation symmetries; both inversion and T symmetries are broken, but T taken

together with inversion is still a symmetry. The resulting magnetic point group of

the system is again 3̄′m′, as it was for Cr2O3, and it does allow for a CSOMP (the

same magnetic arrangement has also been discussed in Ref. [226] in a different

context).

In the density functional calculation one can easily apply a local Zeeman field

to individual atoms in an arbitrary direction. 3 Using this method, we have cal-

culated the CSOMP in Bi2Se3 with the pattern of local fields described previously

and illustrated in Fig. 7.4(b). Fig. 7.8 presents the calculated values of θ as a func-

tion of induced magnetic moment on Bi, where a positive µBi corresponds to the

pattern of magnetic moments indicated in Fig. 7.4(b). (Actually this was done by

3This is done by adding to the Kohn-Sham energy functional an energy penalty term of the
form λ

∑
i(µi − µ̄i)

2, where µi is the actual value of the magnetic moment of the i-th atom
in the unit cell while µ̄i and λ are adjustable parameters. The moments µi are calculated by
integrating the spin density within atom-centered spheres.
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applying the full extrapolation procedure of Fig. 7.7 for one case, µBi = 0.16µB,

and using this to scale the results calculated on the 10 × 10 × 10 grid at other

µBi.) The dependence of the change in CSOMP on the magnetic moment is linear

over a wide range. One can see that for a relatively moderate magnetic moment

of ±0.27µB, the value of θ is changed from π to π±0.55. (For much higher local

magnetic fields, Bi2Se3 becomes metallic and the CSOMP becomes ill-defined.)

These results indicate that it is possible, at least in principle, for a magnetic

material to have a large but unquantized value of θ, thereby providing an incen-

tive for future searches for materials in which such a state arises spontaneously,

without the need to apply perturbations by hand as done here.

7.5 Summary and outlook

In this manuscript, we have presented a first-principles method for calculating

the Chern-Simons orbital magnetoelectric coupling in the framework of density-

functional theory. We have also carried out calculations of this coupling for a

few well-known magnetoelectric materials, namely Cr2O3, BiFeO3 and GdAlO3.

Unfortunately, in these materials the CSOMP contribution to the total magneto-

electric coupling is quite small. This is not surprising, since in most magnetoelec-

tric materials the coupling is expected to be dominated by the lattice-mediated

response, whereas the CSOMP is a purely electronic (frozen-ion) contribution.

Moreover, the CSOMP is part of the orbital frozen-ion response, which is again

expected to be smaller then the spin response, except perhaps in systems with

very strong spin-orbit coupling, as discussed in Sec. 7.1. For example, in Cr2O3

the CSOMP is about 4% of the frozen-ion spin contribution to the magnetoelectric

coupling.

On the other hand, we have reasons to believe that in special cases the CSOMP
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contribution to the magnetoelectric coupling could be large compared to the total

magnetoelectric coupling in known magnetoelectrics such as Cr2O3. After all,

as already pointed out in Sec. 7.2.4, Z2 topological insulators are predicted to

display a large magnetoelectric effect of purely orbital origin when their surfaces

are gapped in an appropriate way. If this is so, why shouldn’t a similar effect

occur in certain T -broken systems?

As a proof of concept for the existence of those special cases, we have con-

sidered Bi2Se3 with inversion and time-reversal symmetries explicitly broken “by

hand.” Here we find that with a relatively modest induced magnetic moment on

the Bi atoms, one can still achieve quite a large change in the CSOMP.

On the computational side, there still remain several challenges. For example,

the convergence of our calculations of the CSOMP with respect to the k-point

mesh density is disappointingly slow. A direct calculation of θ in Bi2Se3 using a

very dense mesh of 11 × 11 × 11 k points only manages to recover about 30% of

the converged value of θ = π, and an extrapolation procedure is needed to brings

us within 10% of that value. This clearly points to the need for methodological

improvements, and we now comment briefly on some possible paths for future

work.

The slow convergence that we observe is related in part to the way in which

we evaluate the position-operator matrix elements 〈0m|rj|Rn〉. As discussed in

Ref. [27], the k-space procedure we adopted (see Sec. 7.3.3) entails an error of

O(∆k2). Preliminary tests on a tight-binding model suggest that an exponentially

fast convergence of θ can be achieved by an alternative procedure, in which the

WFs are first constructed on a real-space grid over a supercell (whose size scales

with the k-mesh density), and the position matrix elements are then evaluated

directly on that grid, as in Ref. [227]. It may also be possible to improve the

k-space calculation by using higher-order finite-difference formulas that have a



179

more rapid convergence with respect to mesh density.

An alternative approach would be to develop a formula for the CSOMP that

is exactly gauge invariant in the case of a discretized k-space grid. Such an

expression already exists for the case of electronic polarization, Eq. (7.23), but

we are aware of no counterpart for the CSOMP. Even though such an approach

would not necessarily provide much faster convergence with respect to the k-space

sampling, it would still be a significant improvement. For example, one would

not need to construct a smooth gauge in k space, which is a particular problem in

the case of Z2 insulators (or for a symmetry-broken insulator in the vicinity of a

Z2 phase). Another use of such a formula would be to calculate with relative ease

the Z2 index of any insulator, even in the cases when other methods [42, 43, 44]

cannot be applied (for example, when inversion symmetry is not present).

Furthermore, a full calculation of the electronic contribution to the orbital

magnetoelectric response should also include the remaining two contributions

given in Eqs. (7.6) and (7.7). This calculation would also require a knowledge of

the first derivatives of the electronic wavefunctions with respect to electric field.

While these derivatives are available as part of the linear-response capabilities

of the Quantum-ESPRESSO package [143], some care is needed to arrive at

a robust implementation of Eqs. (7.6) and (7.7), as will be reported in a future

communication.

Finally, recall that our calculations have all been carried out in the context

of ordinary density-functional theory. In cases where orbital currents play a role,

it is possible that current-density functionals [228, 229] could give an improved

description. However, such functionals are still in an early stage of development

and testing, and we prefer to focus first on exploring the extent to which con-

ventional density functionals can reproduce experimental properties of systems in

which orbital currents are present.
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Overall, significant progress has been made in the ability to calculate the

magnetoelectric coupling of real materials in the context of density-functional

theory. The methods described in Ref. [207] and [208] allow for the calculation of

both the electronic and lattice components of the spin (i.e., Zeeman) contribution

to the magnetoelectric coupling. In principle at least, the lattice component of

the orbital contribution could be computed using the methods of Ref. [230], while

the remaining orbital electronic contributions can be computed from the formulas

derived in Refs. [33] and [34] following the developments discussed here. While we

have not focused here on the contributions of Eqs. (7.5)-(7.6), we plan to present

calculations of these terms in a forthcoming publication. We thus expect that the

computation of all of the various contributions to the magnetoelectric coupling

will soon be accessible to modern density-functional methods.
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Chapter 8

Conclusion

In this thesis we have discussed several different applications of electronic struc-

ture methods based on the theory of pseudopotentials and the density-functional

theory. Nevertheless, there are many common themes that unite this thesis.

First of all, a common theme of this work is the idea of using electronic

structure methods to make specific predictions of materials exhibiting some new

or improved property. More specifically, in Chapter 4 we have proposed new high-

K dielectric materials, and in Chapter 5 we discuss a new mechanism to control

distorted perovskite structures using epitaxial strain. Finally, in Chapter 7 we

speculate about the existence of “large-θ materials.” We hope that eventually

some or all of these predictions will be experimentally verified.

A second underlying theme of this thesis is geometry and topology. These

concepts were explored either arising from the geometry of the crystal structure

or more subtly from the geometry and topology of the electron wavefunctions. For

example, in Chapter 3, geometrical constraints arising from the relative rigidity of

the Si-O tetrahedra result in the intriguing energy landscape for this compound.

Similarly, in Chapter 5, the interplay between the epitaxial strain and geometrical

constraints of the rigid octahedral network results in the anomalous behaviour

of the strained perovskite thin film with strain. Additionally, in Chapters 6
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and 7 we analyze the geometry of electron wavefunctions in periodic crystals.

More specifically, in Chapter 6 we extend the Berry phase notion of electrical

polarization to the case of a Chern insulator. Closely related to the concept

of the Berry phase is a Chern-Simons component of the orbital magnetoelectric

coupling, which we discuss in Chapter 7.

There still remain some unresolved questions in the context of the geometri-

cal aspects of electronic structure theory. For example, it is natural to ask what

other kinds of geometrical or topological terms can be defined for an electron

wavefunction in a periodic potential, and to which physically measurable quan-

tity do they correspond. Some such quantities have been discussed at length in

this thesis and others have been mentioned in Sec. 2.2. Nevertheless, the com-

plete list of such quantities and corresponding measurable properties has not yet

been established. Furthermore, it would be insightful to have a unified theoretical

framework through which one could derive and understand all of these quantities

on the same footing. Moreover, in order to allow for efficient calculation of these

quantities in the framework of modern computation electronic structure tech-

niques, it is important to arrive at properly discretized version of these equations.

Discretization of the polarization formula has been known for a while [24], and

it is given also in Eq. 7.23, but we are still not aware of a similar discretization

of a Chern-Simons orbital magnetoelectric coupling. We leave these topics for a

future work.
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