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Classification of materials with phonon angular momentum and microscopic
origin of angular momentum
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We group materials into five symmetry classes and determine in which of these classes phonons carry
angular momentum in the Brillouin zone, away from a high-symmetry point, line, or plane. In some materials
phonons acquire angular momentum via the forces induced by relative displacements of atoms out of their
equilibrium positions. However, for other materials, such as ferromagnetic iron, phonon angular momentum
arises from the forces induced by relative velocities of atoms. These effects are driven by the spin-orbit
interaction.
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I. INTRODUCTION

A phonon is a quantum of ionic motion in a solid and is
characterized by a branch index ν, a crystal momentum q,
and frequency ω. Phonons can also carry angular momentum
l [1–4]. Such phonons are characterized by circular, or ellipti-
cal, motion of ions. As shown in Ref. [2], each phonon degree
of freedom contributes to the energy of the solid by

h̄ω(n + 1/2)

and to the total angular momentum of the solid L by

l (n + 1/2).

Here n is the Bose-Einstein occupation factor. The magnitude
of lz for a circularly polarized phonon mode moving in the xy
plane is ±h̄, while for the elliptically polarized mode it can
have any value between −h̄ and h̄ [5]. In the zero-temperature
limit (n = 0) each circularly polarized phonon contributes to
the angular momentum by one-half of ±h̄, similar to how each
phonon contributes to the energy with one-half of h̄ω. At el-
evated temperature, each excited circularly polarized phonon
mode contributes ±h̄ to the total angular momentum, and h̄ω

to the total energy.
Here we discuss which classes of materials can have

phonons with nonzero angular momentum l at the generic
nonsymmetric part of the Brillouin zone. Next, for each ma-
terial class, we discuss the microscopic origin of the angular
momentum in the lattice. While for some materials the angular
momentum originates within the Born-Oppenheimer approxi-
mation [6], in other materials, such as ferromagnetic iron, the
phonon angular momentum is acquired only by going beyond
that approximation. We present first-principles calculations
for both cases.

Phonon angular momentum and the underlying forces that
are responsible for its microscopic origin play a crucial role in
the diverse range of effect ranging from the phonon Hall effect
[7–10] magnetic moment of a phonon [9,11–14], Einstein–
de Haas effect [2,15–17], and topological phononic insulators
[18] to Dirac materials [19], driven chiral phonons [20–22],
and other effects [23].

II. SYMMETRY

We start by using the symmetry arguments to determine
in which materials phonons have angular momentum at a
generic nonsymmetric part of the Brillouin zone, away from
the high-symmetry points, lines, and planes. Restriction to
the generic nonsymmetric part of the Brillouin zone greatly
simplifies the analysis, as it allows us to only consider the
point-group symmetries of the system. Analysis that includes
high-symmetry parts of the Brillouin zone would necessar-
ily have to consider the irreducible representation of the
magnetic space group associated with each phonon, as at
high-symmetry points only modes associated with a specific
representation would have phonon angular momentum. Such
an analysis is beyond the scope of this manuscript. The sec-
ond reason for focusing on generic nonsymmetric points is
that many physical effects, such as the Einstein–de Haas ef-
fect, for example, rely on changes in population of phonons
across the entire Brillouin zone. Therefore, in such processes
high-symmetry points, lines, or planes are irrelevant as they
occupy part of the phonon’s Brillouin zone with no volume,
so virtually no phonons correspond to those parts of the
Brillouin zone. There are, of course, many other important sit-
uations where the high-symmetry points are the only relevant
parts of the Brillouin zone. One example is the lowest-order
Raman effect [24], where one approximates that the rele-
vant phonons are at a high symmetry point (Brillouin zone
origin).

In what follows, when we say that a material has a time-
reversal symmetry, we mean that the time-reversal symmetry
is contained in the point group of the material. Therefore, we
allow for the possibility that in some materials (for exam-
ple, some antiferromagnets) the actual space group symmetry
element consists of time-reversal symmetry followed by a
fractional translation of the lattice.

Under these assumptions, we now perform the symmetry
analysis of the phonon angular momentum in a material.
Inversion operation (P) of the crystal transforms a phonon
(at a generic nonsymmetric point) with angular momentum l
and linear momentum q into a phonon with the same angular
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TABLE I. Angular moment of a phonon at a generic nonsymmetric point (away from high-symmetry points, lines, and planes) in the
Brillouin zone in five classes of materials discussed in the text. Angular momentum is allowed in classes III, IV, and V.

Present symmetries Microscopic origin of

Class P T PT Angular momentum? angular momentum Examples

I � � � No Si, Au
II × × � No Cr2O3

III × � × Yes Force-constant matrix Fαβ

i j WC, WSe2, HgS, SiO2, Te
IV � × × Yes Velocity-force matrix Gαβ

i j Fe, Ni, Co
V × × × Yes Both Fαβ

i j and Gαβ

i j MnGe

momentum but opposite linear momentum,

P : (l, q) −→ (l,−q). (1)

Similarly, for the time-reversal operation (T ) we have

T : (l, q) −→ (−l,−q). (2)

Therefore, for an operation PT that consists of time reversal
followed by a spatial inversion, we have

PT : (l, q) −→ (−l, q). (3)

The product PT is the only operation of the crystal that leaves
q unchanged at a generic nonsymmetric point of the Brillouin
zone. Therefore, from Eq. (3) it follows that if and only if PT
is a symmetry, a phonon at such q will have a zero angular
momentum.

As mentioned earlier, in the derivation above, we are con-
sidering q points away from high-symmetry points, lines, or
planes of the Brillouin zone. This is a crucial assumption
here, as this guarantees that the phonon under consideration
is nondegenerate. Otherwise, if we had a pair of degenerate
modes, then the operations P , T , or PT could transform
one degenerate phonon mode into another and the analysis
above would not hold. Therefore, one can construct a phonon
with angular momentum at high-symmetry points in a much
wider range of materials, even those with PT symmetry. As
a simple example, graphene [24] has degenerate phonons at
q = 0 and one can find a basis in the degenerate subspace
of phonons in which individual phonon modes have nonzero
angular momentum. Furthermore, it is worth mentioning that
in any system, regardless of its symmetries, one can construct
a pattern of atomic displacements with angular momentum by
taking a linear combination of phonons at q and −q. In this
work we are specifically focusing only on atomic displace-
ments (phonons) that are characterized by a single q point in
the Brillouin zone.

In Table I we summarized five classes of materials with re-
spect to the presence of inversion symmetry (P), time-reversal
symmetry (T ), or their combination (PT ).

Materials in class I are defined as having all three sym-
metries: P , T , and PT . Since these materials have PT as
one of their symmetries, they can’t have a phonon angular
momentum at a generic nonsymmetric point in the Brillouin
zone. For materials in class II P and T are not symmetries,
but their product PT is a symmetry, which leads to the same
conclusion. Materials in class III have broken P and PT
while T itself is a symmetry. On the other hand, class IV has

broken T and PT while P is a symmetry. In class V all three
symmetries are broken.

III. PHONON EQUATION OF MOTION

The dynamics of ions is typically described [6] within the
lowest-order Born-Oppenheimer approximation via the force-
constant matrix Fαβ

i j . This matrix describes force induced on
the ith atom (in direction α) by a displacement of the jth
atom (in direction β). Therefore, equation of motion for the
ith nucleus (with mass Mi) is given by

−Mi
d2xα

i

dt2
=

∑
jβ

Fαβ
i j xβ

j . (4)

This description is only approximate, as the true dynamics
of nuclei is quantum mechanical, and it therefore cannot be
fully described by a classical equation of motion. Within
the Born-Oppenheimer approximation the total wave function
�(x, xelec) for nuclei and electrons is approximated as

�(x, xelec) = ψ (x)φx(xelec),

where φ is the instantaneous electronic wave function
parametrized by fixed location of nuclei. Using this ansatz
within the full Hamiltonian for nuclei and electrons results in
an effective Schrodinger equation for nuclear wave function
ψ (x). The derivatives of electronic eigenenergies ∂xEx associ-
ated with electronic wave function φ give an effective scalar
potential for ions, while the 〈φx|i∇x|φx〉 acts as an effective
vector potential [25–27].

First, we consider the effective scalar potential experienced
by nuclei. Expanding around the ground state in terms of
small atomic displacements, one obtains the force-constant
matrix Fαβ

i j . Such a force-constant matrix can be computed by
first solving a family of electronic Schrodinger equations as a
function of all ionic coordinates x,

Hxφx = Exφx, (5)

and then taking the second derivative of Ex with respect to
atomic coordinates,

Fαβ
i j = ∂2Ex

∂xα
i ∂xβ

j

. (6)

This approximation can be improved by considering the effec-
tive vector potential, as well as higher orders in the expansion
(of either scalar or vector potential). In such an expansion the
higher-order terms in atomic positions x j as well as their time
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TABLE II. Relationship between various Berry-like objects that depend on either electronic Berry connection Ak in the reciprocal space
(k) or on the ionic Berry connection Ar in the space of ionic positions (r).

Dimensionality Electronic Berry-like terms Mixed electronic-ionic Berry-like terms Ionic Berry-like terms

1 Polarization Born effective charge
P = ∫

Akdk Z = ∫
∂rAkdk

2 Anomalous Hall conductivity Velocity-force
σ = ∫

∂kAkdk G = ∫
∂rArdk

3 (Component of) magnetoelectric coupling
θ = ∫

Ak∂kAkdk

derivatives can occur. In the lowest order the dynamics is then
described by an infinite series of additional terms,

−Mi
d2xα

i

dt2
=

∑
jβ

Fαβ
i j xβ

j +
∑

jβ

Gαβ
i j

dxβ
j

dt

+
∑
jkβγ

Hαβγ

i jk xβ
j xγ

k + · · · . (7)

In contrast to the force-constant matrix Fαβ
i j , the velocity-force

constant matrix Gαβ
i j cannot be computed from the energies of

the electronic Schrodinger equation, but is instead computed
from the effective vector potential, which results in

Gαβ
i j = 2h̄Im

〈
∂φx

∂xα
i

∣∣∣∣∂φx

∂xβ
j

〉
. (8)

While this term appears in the so-called Born-Huang approxi-
mation [6], it is often ignored as it is assumed to be small. The
term G also appears in the quantum-mechanical description
of the motion of three identical nuclei on a triangle [28] in
an external magnetic field and is seen as an extension of the
Aharonov-Bohm effect [29]. In a semiclassical description of
atomic motion, as in Eq. (7), the term proportional to G can
be thought of as a Lorentz force on a charged particle in an
effective magnetic field [30]. Another example where Eq. (8)
appears in the literature is in the phonon Hall effect, that was
first discovered experimentally [7,31] and then assigned the
theoretical origin [32]. In this context the literature refers to
Eq. (8) as the Raman spin-phonon interaction. We refer the
reader to references in Ref. [33] for a history of the phonon
Hall effect.

We incorporate Eq. (8) into equation of motion by using
ansatz

xα
i (t ) = AM−1/2

i Re
(
ξα

i eiωt
)
. (9)

Here A is an arbitrary real constant to be determined later.
The phonon eigenvectors (ξα

i , defined to be normalized to
unity) and frequencies (ω) are then obtained by diagonalizing
a generalized eigenvalue problem,∑

jβ

1√
MiMj

(
Fαβ

i j + iωGαβ
i j

)
ξ

β
j = ω2ξα

i . (10)

Clearly, if G = 0 then the equation above reduces to the well-
known problem of finding eigenvalues of a dynamical matrix
Fαβ

i j /
√

MiMj . With G �= 0 the extra term proportional to G
has the form of a frequency-dependent correction to the force-
constant matrix.

We briefly comment on the mathematical form of Eq. (7)
as a Berry curvature in the space of atomic coordinates [30].
In contrast, Berry curvature in the reciprocal space (for fixed
atomic coordinates) is related to the off-diagonal σxy conduc-
tivity, appearing in the context of the anomalous Hall effect
and integer quantum Hall effect [34,35]. The relationship be-
tween different Berry-like quantities is shown in Table II.

IV. MICROSCOPIC ORIGIN OF ANGULAR MOMENTUM

Given the equation of motion Eq. (7) we now come to the
question of the origin of the phonon angular momentum.

A. Classes I and III

In class I all three symmetries are present (P , T , and
PT ), so both Fαβ

i j and Gαβ
i j terms in Eq. (7) preserve these

symmetries and phonons do not have angular momentum at a
generic nonsymmetric point in the Brillouin zone.

In class III the time reversal T is a symmetry, but the in-
version symmetry is broken. Therefore, trivially, the inversion
symmetry breaking will spill into the force-constant matrix
Fαβ

i j . This can easily be demonstrated on a toy example shown
in Fig. 1. (An example of a real solid with broken inversion
symmetry is discussed in Ref. [36].) The unit cell there con-
sists of two atoms, indicated with green and orange spheres.
If the green atom is exactly in the center of the square formed
by orange spheres (left panel), we have inversion symmetry,
and therefore force constants (springs) Fαβ

i j between green and
four orange atoms will all be equal by symmetry. However,
if we break the inversion symmetry by displacing the green
atom away from the center (middle panel), then two top force
constants Fαβ

i j will have a different value (thick black line)
than the two bottom force constants (thin black line). The
fact that Fαβ

i j has explicitly broken inversion symmetry means,
by our earlier symmetry analysis from Sec. II, that if we
solve equation of motion Eq. (7) with such Fαβ

i j , the resulting
phonon eigenvectors will have angular momentum at a generic
nonsymmetric point in the Brillouin zone. This mechanism,
therefore, will be the source of the phonon angular momentum
in class III (and partially in class V as well).

In class III the phonon angular momentum of the same
phonon branch at q must have the opposite sign to that at −q.
This follows from Eq. (1), and such phonon band structure is
sketched in Fig. 1.
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FIG. 1. Sketch of microscopic origins of the phonon angular mo-
mentum in a fictitious material with two atoms per unit cell (drawn as
green and orange circles). The first column corresponds to material
where P , T , and PT symmetries are present. In the second column,
inversion (P) is broken by displacement of the green atom (class
III). In the third column, time reversal (T ) is broken by (class IV)
magnetism on the green atom (magnetic moment points out of the
page). Strengths of force constant matrices Fαβ

i j and velocity-force

constant matrices Gαβ

i j are indicated with black lines in the first and
the second row for all three cases. The third row shows sketches
of the corresponding phonon band structures and phonon angular
momenta in the vicinity of the Brillouin zone origin. Signs of angular
momenta for two sketched phonon branches follow from Eqs. (1)
and (2). Phonon angular momentum exactly at the origin is excluded
from the sketch, as in this work we focus on generic nonsymmetric
points of the Brillouin zone only. Phonon angular momentum in the
second column (broken inversion, P , class III) arises from the asym-
metric force constants Fi j (as sketched in the top panel of the second
column). Analogously, in the third column (broken time reversal,
T , class IV) phonon angular momentum arises from the presence
of nonzero Gi j (as sketched in the middle panel of the third column).

B. Class IV

The situation in class IV is somewhat more complex. In
this class of materials, containing ferromagnets such as iron,
the inversion symmetry is preserved while the time-reversal
symmetry is broken. As a general principle, one would expect
that time-reversal breaking in the electronic subsystem must
somehow spill into the ionic subsystem, as electrons and ions
are coupled. While this is true, the spilling of the time-reversal
breaking into ions does not occur in the first term of the
expansion in Eq. (7), the force constant matrix Fαβ

i j , but it does

spill into the velocity-force matrix Gαβ
i j . Let us demonstrate

this from the definition of Fαβ
i j and Gαβ

i j .

The force constant Fαβ
i j was defined in Eq. (6) as the second

derivative of the total energy Ex with respect to atom coordi-
nate. For the solid of any symmetry, the total energy Ex is a
scalar that is invariant under the time-reversal operation,

T : Ex −→ Ex, (11)

for any set of atom coordinates x. Therefore, the derivatives
of Ex with respect to x are also unchanged under T , so the
force-constant matrix is unchanged as well,

T : Fαβ
i j −→ Fαβ

i j . (12)

This holds regardless of whether the solid itself is in a time-
reversal symmetric ground state or not. Therefore, Eq. (12)
holds even in a ferromagnet like bulk Fe, or any other
materials in class IV. For example, ferromagnetic bulk Fe
magnetized along the positive ẑ direction will have exactly the
same force-constant matrix Fαβ

i j as its time-reversed image,
where the magnetic moment is reversed to point along the
negative ẑ axis. This holds true even if spin-orbit interaction,
or any other relativistic effect, is included in the calculation.

Since the force-constant matrix Fαβ
i j is unaware of the time-

reversal symmetry breaking in the solid, any ionic motion in
the class IV material that is driven only by the force-constant
matrix Fαβ

i j will preserve time-reversal symmetry. Therefore,
following symmetry analysis from Sec. II, the phonons in
class IV material described only by Fαβ

i j will not have angular
momentum at a generic nonsymmetric point in the Brillouin
zone. This same observation can be again made on our toy
model from Fig. 1. Imagine that instead of displacing the
green atom, we make the green atom magnetic, therefore
breaking the time-reversal symmetry in the solid. Magnetiza-
tion of the green atom is pointing out of the page. Since the
distribution of charge on the atom was changed when we made
the atom magnetic, one might expect that the resulting force
constants between the green and orange atoms will change as
well. And they do, but clearly the changes to all four force
constants must be equal. More importantly, these four force
constants would change by the same amount, regardless of
whether the magnetic moment on the green atom in Fig. 1 is
pointing in or out of the page. Therefore, adding a magnetic
moment to the green atom did not change the symmetry in the
force constant matrices Fαβ

i j , so the underlying phonons did

not acquire angular momentum from changes in Fαβ
i j .

Now let us consider the equation of motion for a solid
in class IV that includes the next term in the expansion,
the velocity-force constant term Gαβ

i j . While force-constant
matrix is defined in terms of a scalar quantity (total energy
Ex) which does not change under time-reversal operation, the
velocity-force constant is defined in terms of the electron wave
functions [see Eq. (8)], which do change under time reversal.
The time-reversal operation, when acting on electron wave
functions, is represented by an antiunitary operator T̂ . For any
two wave functions |φ1〉 and |φ2〉 we define |φ′

1〉 = T̂ |φ1〉 and
|φ′

2〉 = T̂ |φ2〉. For any antiunitary operation, by definition, we
have 〈φ′

1|φ′
2〉 = [〈φ1|φ2〉]∗. This gives us

T :

〈
∂φx

∂xα
i

∣∣∣∣∂φx

∂xβ
j

〉
→

[〈
∂φx

∂xα
i

∣∣∣∣∂φx

∂xβ
j

〉]∗
. (13)

Since Gαβ
i j from Eq. (8) depends on the imaginary part of

this overlap, we conclude that Gi j changes sign under time-
reversal operation,

T : Gαβ
i j −→ −Gαβ

i j . (14)
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In other words, if a solid has a broken time-reversal symmetry,
that breaking will spill into the velocity-force constant matrix
Gαβ

i j , and therefore ionic motion will also experience broken
time-reversal symmetry. For example, this means that revers-
ing the direction of the magnetization in bulk ferromagnetic
iron from +ẑ to −ẑ will change the sign of Gαβ

i j as well.
[Alternatively, we can demonstrate this point also by con-

sidering the expansion in Eq. (7). From this expansion, the
Gαβ

i j term can be seen as the second derivative of energy,
once with respect to atomic position and once with respect to
atomic velocity. Therefore, velocity force Gαβ

i j changes sign
under time reversal as the velocity also changes sign under
time reversal. In fact, any term in the equation of motion
Eq. (7) with an odd number of time derivatives will change
sign under time-reversal symmetry.]

Therefore, the phonon angular momentum in ferromag-
netic iron, and any other material in class IV, will originate
not from Fαβ

i j but from terms with an odd number of time
derivatives. Clearly, the dominant contribution will come from
Gαβ

i j , as it is the lowest term in the expansion with the correct
number of time derivatives.

In contrast to class III, in class IV the phonon angular
momentum of the same phonon branch at q must have the
same sign as that at −q. This follows from Eq. (2) and such
phonon band structure is sketched in Fig. 1.

C. Class II

Somewhat more involved is the case of materials in class
II. These are antiferromagnets such as Cr2O3, where the in-
version symmetry operation P is centered in between two
magnetic Cr atoms with opposing magnetic moments. There-
fore, while the spatial inversion P is broken (as two Cr atoms
with opposing magnetic moments are not equivalent), the
product PT of spatial inversion with the time-reversal oper-
ation is a symmetry. The presence of PT symmetry ensures
that phonons at a generic nonsymmetric point in the Brillouin
zone do not have phonon angular momentum. However, since
time reversal itself is broken, the velocity force Gαβ

i j is gener-
ally nonzero in class II, but this does not induce the phonon
angular momentum as Gαβ

i j itself must be PT symmetric.

D. Class V

Finally, we now discuss class V, in which the situation is
the simplest from the point of view of symmetry. Now none
of the three operations (P , T , and PT ) are a symmetry of
the systems. Therefore, the phonon angular momentum is now
induced both by Fαβ

i j and Gαβ
i j . Furthermore, since there is no

symmetry now that would map generic nonsymmetric q to −q,
there is now no relationship between phonon frequency and
phonon angular momentum at generic nonsymmetric q to −q.
This is in contrast to the situation in classes III and IV, as
sketched in the bottom panels of Fig. 1.

V. EXAMPLE: BROKEN INVERSION
SYMMETRY (CLASS III)

Now let us consider phonon angular momentum in a
few specific materials, as calculated from the first-principles

approach. First, we will consider material from class III with
broken inversion symmetry but with time-reversal symmetry.
According to our earlier analysis, phonon angular momentum
in this material will originate from the inversion symmetry
breaking of the force constant matrix Fαβ

i j .
As an example of material in class III we considered

tungsten-carbide, WC. Its structure can be seen as an alter-
nating series of tungsten and carbon hexagonal sheets. The
space group of WC is P6̄m2 (number 187). This space group
does not contain inversion symmetry. The origin of the in-
version symmetry breaking is not a displacement of either
W or C atoms; it instead originates from the fact that W
atom is different from the C atom. If both W and C sites
were populated with the same type of atom, the space group
would become P63/mmc (number 194), which does contain
inversion symmetry.

Some other interesting materials in class III are α-HgS as
studied in Ref. [37], α-SiO2 studied in Ref. [38], as well as Te
studied in Ref. [39].

We computed the phonon band structure of WC within
the density functional perturbation theory, as implemented in
the QUANTUM-ESPRESSO computer package [40]. We approx-
imate exchange correlation with the Perdew-Burke-Ernzerhof
(PBE) approximation [41]. We compute dynamical matrices
on a regular 6 × 6 × 6 grid of points and interpolate on a
denser grid of points to plot the phonon band structure.

Given a normalized eigenvector ξα
i of the dynamical matrix

(here α is Cartesian direction and i is atomic index), the
phonon angular momentum is given as

lz = 2h̄
∑

i

Im
(
ξ x

i ξ̄
y
i

)
. (15)

Similar expressions hold for phonon angular momentum in
x and y directions. The derivation of Eq. (15) is given in
Refs. [1,2]. Here we only sketch the derivation of the phonon
angular momentum in the semiclassical language. Classical
atomic displacements of the lattice vibration are given by
Eq. (9). If we choose arbitrary constant A in Eq. (9) to equal√

2h̄/ω, then classical energy in the atomic vibration equals
h̄ω, as expected. With this normalization, the computation of
the angular momentum of the lattice vibration is now simply

lα = εαβγ
∑
iβγ

Mix
β
i

dxγ
i

dt
. (16)

If we use now Eq. (9) with A = √
2h̄/ω, we get Eq. (15),

in agreement with quantum-mechanical derivation from
Refs. [1,2]. (Here εαβγ is the Levi-Civita symbol. εαβγ = 1
for any even perturbation of three indices, εαβγ = −1 for
odd perturbation, and εαβγ = 0 if any two of the indices are
repeating.)

Figure 2 shows calculated phonon band structure, and
phonon angular momentum, of tungsten carbide, WC.
Phonons with angular momentum along the z axis are in-
dicated with red and blue. Different colors correspond to
different signs of the phonon angular momentum lz. As can be
seen from Fig. 2, phonons in class III have opposite angular
momentum at q and −q, which is in agreement with Eq. (2)
and the sketch in Fig. 1.
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FIG. 2. The phonon band structure of tungsten carbide (class III)
along the high-symmetry path (a) in reciprocal space, and along the
path that is shifted off the high-symmetry path by around 10% of the
reciprocal lattice vector (b). Phonons with positive (negative) angular
momentum along the z axis are indicated by red (blue) color. The
thickness of the line is proportional to the magnitude of the phonon
angular momentum component lz. The maximum line thickness (at
the K points) in the figure corresponds to the circularly polarized
phonon mode with l = ±h̄. Phonons at high-symmetry lines and
points that by symmetry have lz = 0 are indicated with a green line
and dot.

Phonons that have lz = 0 by symmetry are indicated with
a green line or circle. As can be seen from Fig. 2(a), there
are two phonon branches, indicated with a green line, that
have lz = 0 along the entire �–K–M path. Furthermore, all
phonons have lz = 0 at inversion symmetry invariant M point,
but only two phonons have lz = 0 at the K point. At the �

point one can choose a basis of phonon modes so that lz = 0
for all phonon branches. However, for the doubly degenerate
modes at the � point one can choose a basis so that lz �= 0.
Figure 2(b) shows phonon band structure on a straight line
in the phonon Brillouin zone which passes only near K and M
points, but never goes through K and M. This path is chosen so
that it avoids high-symmetry points, lines, and planes (except
for origin, �). As can be seen from Fig. 2(b), all six phonons
now have nonzero lz along the entire path (except for �), in
agreement with the discussion in Sec. II.

VI. EXAMPLE: BROKEN TIME-REVERSAL
SYMMETRY (CLASS IV)

Now we consider the example of a material from class
IV. We will consider ferromagnetic bcc iron, as it is one of

the simplest materials in this class. We computed the force-
constant (dynamical) matrix using the density functional per-
turbation theory, as implemented in the QUANTUM-ESPRESSO

computer package [40], within the PBE approximation [41].
We compute dynamical matrices on a regular 4 × 4 × 4 grid
of q points in the conventional unit cell with two Fe atoms per
cell (this would correspond to effectively 5 × 5 × 5 grid of q
points in the primitive unit cell).

Since bcc iron has inversion symmetry, the phonon angular
momentum has to arise from the velocity-force constant ma-
trix Gαβ

i j , as discussed earlier. We evaluate the interband part

of Gαβ
i j starting from Eq. (8). Since this expression includes

only the occupied states, we can express Gαβ
i j in terms of

one-electron orbitals φkn and occupations fkn,

Gαβ
i j = 2h̄

1

Nk

∑
k

Im
∑

n

fkn

〈
∂φkn

∂xα
i

∣∣∣∣∂φkn

∂xβ
j

〉
. (17)

We compute the real-space Berry curvature by the finite-
difference approach. Let us denote with φkn a one-electron
orbital for a system in which all atoms are at ground state
locations and φiα

kn is the one where the ith atom is displaced
by � in Cartesian direction α. The expression for real-space
Berry curvature then becomes

Gαβ
i j = h̄

�2

1

Nk

∑
k

Im
∑
mno

[(
f 1/6
km

〈
φkm

∣∣φiα
kn

〉
f 1/6
kn

)

× (
f 1/6
kn

〈
φiα

kn

∣∣φ jβ
ko

〉
f 1/6
ko

)(
f 1/6
ko

〈
φ

jβ
ko

∣∣φkm
〉
f 1/6
kp

)]
. (18)

Clearly, this expression will revert to Eq. (17) in the limit
of occupations at zero temperature [in the zero-temperature
limit, one can disregard exponents on occupation factors in
Eq. (17)]. However, this expression has an advantage in that,
unlike Eq. (17), it does not assume that states can be la-
beled with the consistent band label as atoms are displaced.
In Eq. (18) the sum is done over all states, and since it is
manifestly gauge invariant, it therefore does not depend on
the labeling of bands.

We computed Eq. (18) from first principles. We first com-
pute fully relativistic (including spin-orbit) ground state wave
functions (φkn) of bulk bcc iron in a ferromagnetic state. Next
we construct a 2 × 2 × 2 supercell of the conventional unit
cell (this supercell contains 16 Fe atoms, as there are two
atoms of Fe per one conventional unit cell). Magnetic moment
is set to point along the z axis, which is the easy axis of the
magnetic anisotropy. Next, we rigidly displace one of the Fe
atoms in the supercell (labeled with i = 1) along the α = x
direction and repeat the calculation of the electron orbitals
(we label these as φi=1,α=x

kn ). We repeat the same calculation
for a displacement of atoms along the α = y direction. There
is no need to displace atoms in the z direction, as Gαβ

i j = 0
by symmetry when either α or β are z (we also confirmed
this by a direct calculation). The magnitude of the atomic
displacements in the x or y direction is 6 × 10−3 Å. There
is no need to compute wave functions for the displacements
of the remaining 16 − 1 = 15 atoms in the supercell, as those

134307-6



CLASSIFICATION OF MATERIALS WITH PHONON … PHYSICAL REVIEW B 108, 134307 (2023)

FIG. 3. Norm of the Fourier transform of force-constant matrix
F αβ

i j and velocity-constant matrix Gαβ

i j as a function of distance be-
tween atoms.

can be obtained trivially by real-space translation of the wave
function inside the supercell.

Next we obtain the needed Gαβ
i j elements by directly com-

puting the overlaps between the wave functions as given in
Eq. (18). To get better spatial resolution of Gαβ

i j we also
perform Wannier interpolation [42] to an effective 4 × 4 × 4
supercell (containing in total 128 Fe atoms). Figure 3 shows
that both the force-constant matrix Fαβ

i j and the velocity-force

matrix Gαβ
i j decay very quickly in the real space.

Results for the phonon dispersion in iron, including the
effects of the velocity-force constant matrix Gαβ

i j , are shown
in Fig. 4. The addition of the velocity-force constant term
introduces a small gap opening between the two transverse
acoustic branches. In the vicinity of the gap opening, the
phonons are fully circularly polarized. (We computed phonon
angular momentum using Eq. (15), which is valid in class
IV and V as long as Gαβ

i j is small [43].) These regions
with nonzero phonon angular momentum are indicated with
a yellow color in Fig. 4. Since without the velocity-force
term the transverse phonons are exactly degenerate along
the qx = qy = 0 line, the velocity-force constant term intro-
duces fully quantized angular momentum in the vicinity of
the line regardless of its strength. Of course, with stronger
spin-orbit coupling we expect that the induced velocity force
will be larger. For example, the phonon gap opening in CeF3

[44]—which likely originates from the same microscopic
mechanism, as discussed in Ref. [2]—is about 25 cm−1, which
is 6% of the phonon frequency. Recent theoretical work on
a different material, ferromagnetic CrI3, finds significantly
smaller phonon splitting, since the relevant phonon frequency
is much lower than the acoustic magnon frequency at � [45].

FIG. 4. Phonon angular momentum of ferromagnetic bcc iron
(class IV). Phonon wave vector is defined in the conventional unit
cell (containing two iron atoms). Phonon wave vector component
qy is set to zero. (a) Yellow indicates regions of the Brillouin zone
in which two nearly degenerate transverse acoustic phonons are
circularly polarized (l = ±h̄) due to the velocity-force term Gαβ

i j .
Phonons in purple regions have a negligible amount of phonon an-
gular momentum. The magnetization of iron is pointing along the z
axis. (b) Cut through the phonon Brillouin zone (defined by qy = 0
and qz = 0.4) using the same coloring convention for the phonon
angular momentum as in Fig. 2.

VII. CONCLUSION

We performed symmetry analysis to understand which ma-
terials can or cannot have phonons with angular momentum
at generic nonsymmetric parts of the Brillouin zone (away
from high-symmetry point, line, or plane). All materials fall
into one of the five classes, depending on whether P , T , and
PT are symmetries or not. Here, spatial inversion symmetry
is denoted as P while time reversal is denoted as T . The
time-reversal breaking in the phonon dynamics does not occur
in the force-constant matrices. Instead, one must go to the
next term in the expansion, the velocity-force constant matrix
Gαβ

i j . The Gαβ
i j measures force on atom i induced by velocity,

not displacement, of atom j. These effects will be relevant
not only for phonon angular momentum in class IV, but also
for any other effect that depends on time-reversal breaking in
phonons, such as phonon Hall effect, magnetic moment of a
phonon, and Einstein–de Haas effect.
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