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1. Introduction

The discovery [1] of superconductivity in LaFeAsO1−xFx with 
a transition temperature of 26 K in 2008 triggered unprece-
dented interest and further research in iron-based supercon-
ductors. So far, superconductivity was found in four main 
families of iron-based compounds: 1111, 122, 111, and 11  
[2, 3]. These iron-based materials have two phases in the 
normal state: one is a paramagnetic metal and the other is 
an antiferromagnetic metal. Superconductivity emerges in 
both the paramagnetic and antiferromagnetic metal phases 
via application of hydrostatic pressure or carrier doping of 
the parent materials. Hence, it is expected that understanding 
the electronic and magnetic structures of the metallic normal 
states of these systems is a needed ingredient for unraveling 
the origin of the superconductivity of iron-based materials.

Many experimental and theoretical studies have been made 
on the normal states of iron-based superconductors, and a 
consensus [4, 5] has been reached in these systems that the 
Coulomb interaction among the electrons is not strong enough 
to induce a Mott insulating phase. However, the Coulomb 
interaction plays an important role in determining the electric 
and magnetic properties. In the early stages of this research, 
theoretical insight into the properties of these materials was 
gained by calculations based on density functional theory 

(DFT) within the local density approximation (LDA) or gen-
eralized gradient approximation (GGA). However, LDA and 
GGA have some limitations in describing the normal states 
of iron-based superconductors. In a paramagnetic phase, the 
measured mass of low-energy quasiparticles [6] is 2–3 times 
larger than that calculated within LDA or GGA. In addition, 
the measured magnitude of the ordered moment in an antifer-
romagnetic phase [7, 8] is 2–3 times smaller than that obtained 
with LDA or GGA. Furthermore, LDA and GGA studies 
related to the specific heat of these materials are not consistent 
with the experimental data. The theoretical Sommerfeld coef-
ficient [9–11] of optimally K-doped BaFe2As2 is about five 
times smaller than that found in the experimental data [12–16].

There have been many attempts to describe electronic 
correlations in these materials by combining LDA or GGA 
calculations with a dynamical mean-field theory (DMFT), 
quasiparticle self-consistent GW (QSGW), or the Gutzwiller 
method [17–20]. Using these methods, many of the electric 
and magnetic properties of correlated iron-based supercon-
ductors can be reproduced. For example, effective masses and 
Fermi surfaces (FSs) across all families of iron compounds 
are well described in the framework of DFT + DMFT [17] and 
QSGW [18], as well as ordered moments and the fluctuations 
of local moments within DFT + DMFT [17, 19]. However, 
a calculation of the electron–phonon coupling coefficient 

Journal of Physics: Condensed Matter

Calculation of the specific heat of optimally 
K-doped BaFe2As2

Hyungju Oh, Sinisa Coh and Marvin L Cohen

Department of Physics, University of California at Berkeley and Materials Sciences Division, Lawrence 
Berkeley National Laboratory, Berkeley, CA 94720, USA

E-mail: xtom97@civet.berkeley.edu

Received 15 May 2015, revised 7 July 2015
Accepted for publication 8 July 2015
Published 4 August 2015

Abstract
The calculated specific heat of optimally K-doped BaFe2As2 in density functional theory is 
about five times smaller than that found in the experiment. We report that by adjusting the 
potential on the iron atom to be slightly more repulsive for electrons improves the calculated 
heat capacity as well as the electronic band structure of Ba0.6K0.4Fe2As2. In addition, structural 
and magnetic properties are moved in the direction of experimental values. Applying the same 
correction to the antiferromagnetic state, we find that the electron–phonon coupling is strongly 
enhanced.

Keywords: optimally K-doped BaFe2As2, specific heat, semi-empirical density functional 
theory

(Some figures may appear in colour only in the online journal)

H Oh et al

Calculation of the specific heat of optimally K-doped BaFe2As2

Printed in the UK

335504

JCOMEL

© 2015 IOP Publishing Ltd

2015

27

J. Phys.: Condens. Matter

CM

0953-8984

10.1088/0953-8984/27/33/335504

Papers

33

Journal of Physics: Condensed Matter

IOP

0953-8984/15/335504+6$33.00

doi:10.1088/0953-8984/27/33/335504J. Phys.: Condens. Matter 27 (2015) 335504 (6pp)

mailto:xtom97@civet.berkeley.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/0953-8984/27/33/335504&domain=pdf&date_stamp=2015-08-04
publisher-id
doi
http://dx.doi.org/10.1088/0953-8984/27/33/335504


H Oh et al

2

(which is needed for heat capacity and superconductivity 
estimates) within these approaches is non-trivial. Therefore, 
we use a simpler method to calculate electronic and magnetic 
properties of these materials.

In this work we study the heat capacity of Ba0.6K0.4Fe2As2 
superconductor ( =T 38c  K) [21] within a semi-empirically 
modified GGA potential, following studies [22] of an FeSe 
monolayer. We show that one can choose a small repulsive 
potential located on the iron atoms (+A term) so that the 
calculated specific heat coefficient is increased from γ = 12n   
mJ mol−1 K−2 in GGA to γ = 38n  mJ mol−1 K−2 in GGA + 
A, much closer to recent experimental findings ( γ = −40 50n  
mJ mol−1 K−2 ) [12–15]. The increase in γn relative to GGA 
comes mostly from the increased density of states (DOS) 
at the Fermi level and to a smaller extent from an enhanced 
electron–phonon coupling. Since Ba0.6K0.4Fe2As2 is near a 
magnetic phase transition, we also computed the heat capacity 
in the striped antiferromagnetic ground state, present in the 
parent compound. Just as in the nonmagnetic calculation, we 
again find an increased γn (from 6 to 12 mJ mol−1 K−2) when 
+A term is added. However, unlike in the nonmagnetic calcu-
lation, the increased γn originates mostly from increase in the 
electron–phonon coefficient λ.

The focus of this work is on the heat capacity and the elec-
tronic structure of Ba0.6K0.4Fe2As2. The microscopic origin 
for the success of the semi-empirical approach (+A) is left 
for future studies. We only note here that the success of this 
approach is not limited to Ba0.6K0.4Fe2As2, but that it also 
improves [22] calculated properties for a range of transition-
metal compounds (KCuF3, LaNiO3, (La,Sr)2CuO4, SrTiO3, 
and FeSe monolayer), and that this approach is similar in 
spirit to earlier empirical methods [23, 24]. For all the com-
pounds, the +A term modifies the d levels of transition metals 
reducing the electron density near the transition metal sites. 
This implies that LDA/GGA might overestimate d-level filling 
in a transition-metal compounds.

2. Methods

Our calculations are based on norm-conserving pseudopo-
tentials and the Perdew–Burke–Ernzerhof [25] functional 
as implemented in the SIESTA code [26]. Electronic wave-
functions are expanded with pseudoatomic orbitals (double-ζ 
polarization). We treat the potassium doping within the virtual 
crystal approximation.

Following [22] we modify the GGA potential ( )V rGGA  by 
adding a repulsive potential on each iron atom in the calcula-
tion during the self-consistency loop,

∑( ) + (∣ − ∣)V A fr r r .
i

iGGA (1)

Here f (r) is a positive dimensionless function peaked at the 
nucleus of the iron atoms (ri) and the extent of f (r) is compa-
rable with the size of d orbitals in the iron atoms. We discuss 
the choice of A and f (r) in section 2.1.

The GGA + A approach can be understood as a variant 
of the constrained DFT (CDFT) formalism [27]. The CDFT 
approach adds a general constraint to the density,

∫∑ ρ( ) ( ) =
σ

σ σw Nr r r d ,c c (2)

where ( )w rc  acts as a weight function that defines the con-
strained property. The Kohn–Sham total energy is minimized 
under the constraint from equation  (2), by making the fol-
lowing functional stationary,

∫∑ρ ρ ρ[ ] = [ ] + ( ) ( ) −
σ

σ σ
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟W V E V w d Nr r r, .c c c c (3)

Here Vc is a Lagrange multiplier corresponding to the con-
straint. Therefore, in the effective Hamiltonian of the CDFT 
formalism, there is an additional potential ( )σV w rc c  coming 
from the constraint. Since the GGA + A potential (equa-
tion (1)) has the same form as the constraint potential in the 
CDFT approach, GGA + A method has the same effect as con-
straining the number of electrons around the iron atom.

2.1. Choice of A f(r) term

Now we discuss our choice of the correction term A f(r) 
appearing in equation (1).

Following previous work on the FeSe monolayer [22] we 
first choose ( ) = −f r e r1.0 2

 in atomic units (Bohr radius) with 
the extend comparable with the size of the iron atom d-orbital. 
Second, we tune A from 0 up to Ac until one of the properties 
of Ba0.6K0.4Fe2As2 agrees better with the experimental data. 
We choose to tune the occupied bandwidth of the M-point 
electron pocket since it is severely overestimated in GGA (it 
is 130 meV in GGA while  ∼0–10 meV in the experiment [28, 
29]). We find that using =A 1.3c  Ry has the desired effect of 
tuning the M-point bandwidth to about 4 meV.

Just as in [22] we find that the choice of f (r) is not very 
important for physical properties as long as it is localized 
on the iron atom and A is tuned for each choice of f (r). For 
example, using ( ) = −Af r 2.2e r1.7 2

 or ( ) = −Af r 5.5e r3.5 2
 results 

in nearly indistinguishable band structure of Ba0.6K0.4Fe2As2.
Using =A Ac improves not only the occupied band-

width of the M-point electron pocket but other properties 
of Ba0.6K0.4Fe2As2 as well. For example, structural param-
eters relevant for superconductivity (arsenic height and iron-
arsenic-iron angle) [30–33] are both moved in the direction 
towards experimental value. However, numerical values of 
these structural parameters match experimental values for A 
in between 0 and Ac and are thus overcorrected at =A Ac. For 
example, going from GGA to GGA + A the arsenic height is 
increased from 1.30 Å to 1.44 Å while the iron-arsenic-iron 
angle is decreased from 112.5° to 105.9°. Another improve-
ment is that the antiferromagnetic ground state is suppressed 
in GGA + A. See table 1 for more details. We confirmed that 
the modifications of structural and magnetic properties are 
insensitive to the choice of f (r).

Finally, using =A Ac the calculated heat capacity of 
Ba0.6K0.4Fe2As2 is more than three times larger as compared 
to the GGA value, and in good agreement with the experi-
mental value. We discuss heat capacity in more detail in 
section 4.
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3. Electronic structure

Now we discuss the electronic structure of Ba0.6K0.4Fe2As2 in 
GGA and GGA + A. In all of our calculations we perform a 
full structural relaxation for both forces on atoms and stresses 
on the cell. We used double zeta polarized basis and a charge 
density cutoff of 1200 Ry. The atomic positions are relaxed 
so that the force on each atom is less than 0.04 eV Å−1. The 
relaxed structural parameters are given in table 1. We sample 
the Brillouin zone on a uniform × ×32 32 32 k-point mesh.

Figure 1 compares the electron density in Ba0.6K0.4Fe2As2 
in GGA and GGA + A. From panel b of the figure it is clear 
that including the +A term transfers some of the electronic 
density from the iron atom to the outer region. The maximal 
relative change in the electronic density is about 7 % and it 
occurs on a charge density peak near the iron atom.

Figure 2 compares the band structure and the Fermi sur-
face in GGA and GGA + A. We compare these results to the 
experiment in section 3.1.

In the GGA case, as in a previous calculation, [9] there are 
three hole pockets at the zone center (Γ), and two electron 
pockets at the zone corner (M). However, the band structures 
and the Fermi surfaces in GGA + A are both quantitatively 
and qualitatively different in several respects. First, the occu-
pied bandwidth of the M-point dyz and dzx electron pockets in 
GGA + A is 4 meV (figure 2(a)), while it is 130 meV in GGA. 
In addition, the effective mass of these pockets is increased by 
a factor of 3–4 in GGA + A and the shape of the Fermi pocket 
in GGA + A is more elongated towards the Γ and Z points.

Second, the area of the hole pockets at Γ and Z is changed 
in GGA + A. Specifically, in GGA + A the size of the dxy hole 
pockets at Γ and Z is increased by a factor of 4, so that it is 
larger than remaining two pockets. In addition, the dz2 hole 
pocket is not present at Z in GGA + A so that now there are 
only two hole pockets at the Z point (versus three hole pockets 
at Z in GGA). Therefore, a three-dimensional ellipsoidal 
Fermi surface exists at Γ in GGA + A.

3.1. Comparison with ARPES

Now we compare modifications in the band structure due to 
+A term with the currently available experimental data on 
Ba0.6K0.4Fe2As2 band structure.

First, in the angle-resolved photoemission spectroscopy 
(ARPES) experiment, three hole pockets are observed at 
the zone center and the largest pocket is shown to originate 
from dxy orbital [28] as in our GGA + A calculation. Second, 
large elongation of the M point pocket towards the Γ and Z 
points, we find using +A was experimentally observed in 

angle-resolved photoemission spectroscopy from [34]. Third, 
the presence of three-dimensional FS in Ba0.6K0.4Fe2As2 was 
suggested from c-axis polarized optical measurements [35]. 
The optical experiment found that the c-axis data only exhibit 
a small difference across Tc. This indicates the existence of 
three-dimensional FS with a dispersive band along the c axis.

4. Specific heat

In this section  we discuss the calculated specific heat of 
Ba0.6K0.4Fe2As2. The specific heat coefficient γn is defined as,

γ λ γ= ( + )1 .n 0 (4)

Here γ0 is the Sommerfeld coefficient proportional to DOS 
at the Fermi energy, and λ is the electron–phonon coupling 
coefficient.

First we discuss the density of states in GGA and GGA 
+ A. In GGA the DOS at the Fermi energy of nonmagnetic 
Ba0.6K0.4Fe2As2 is 4.4 states eV−1 f.u.−1 (the energy depend-
ence of DOS is shown in figure  3). Similar value (3.1–5.5 
states eV−1 f.u.−1) for DOS was found in previous calcula-
tions [9, 10].

Table 1. A comparison of the arsenic height, iron-arsenic-iron angle, lattice constants (a and c), magnetic moment (μFe) on iron atom, and 
the energy difference (ΔE) per one iron atom between antiferromagnetic stripe and nonmagnetic ground state in GGA, GGA  +  A, and from 
experiment [21] in Ba0.6K0.4Fe2As2.

As height (Å) Fe–As–Fe (°) a (Å) c (Å) μFe (μB) ΔE (eV)

GGA  +  A 1.44 105.9 3.82 13.89 2.26 –0.19
GGA 1.30 112.5 3.89 13.26 2.91 –0.33
Experiment 1.37 109.9 3.91 13.21

Figure 1. (a) The electron density of Ba0.6K0.4Fe2As2 in the 
nonmagnetic state on a line between the nearest-neighbor (left) and 
next-nearest-neighbor (right) iron atoms within GGA (blue) and 
GGA + A (red). Difference between GGA and GGA + A is shown 
in panel (b). Densities of both semi-core (3s, 3p) and valence (3d, 
4s) states are included in our pseudopotential calculation.
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In our GGA + A calculation, DOS at the peak value near 
the Fermi level is 11.9 states eV−1 f.u.−1, almost three times 
larger than in GGA. Since γ0 is proportional to DOS, it is also 
increased by a factor of 3 in GGA + A over GGA (see table 2).

Increase in the DOS after inclusion of +A term originates 
from the changes of the band structure at the M point. In the 
GGA + A, the bottom of the electron-like band at the M point 
(and the corresponding van Hove singularity) is placed almost 
at the EF. Furthermore, the DOS at the van Hove singularity is 
enhanced due to the renormalization of the band width and the 
formation of a saddle point at the M point (figure 2(a)).

After having discussed the γ0, we now discuss the contri-
bution of the electron–phonon coupling coefficient (λ) to the 
heat capacity γn. We calculated the electron–phonon coupling 
coefficient λ using the Wannier interpolation technique [37] 
and the Quantum-ESPRESSO package [38].1 The electron–
phonon coupling in the nonmagnetic GGA + A calculation 
is 0.37, about two times larger than 0.18 obtained in GGA 
(see table 2). However, the heat capacity (γn) is proportional to 

λ+1  so the increase in λ in GGA + A increases γn by 16 %, in 
addition to the dominant increase from larger DOS.

Taking both terms together (γ0 and λ+1 ) we find that 
within GGA + A method specific heat coefficient γn equals 
38 mJ mol−1 K−2, which is much closer to the experimentally 
measured values (40–50 mJ mol−1 K−2) than the GGA result 
(12 mJ mol−1 K−2).

4.1. Antiferromagnetic ground states

So far we discussed the specific heat in the nonmangetic 
ground state of Ba0.6K0.4Fe2As2, now we consider two anti-
ferromagnetic ground states: striped and checkerboard. The 
striped case is especially important, since this is the experi-
mentally determined ground state of the parent compound 
BaFe2As2. We study the alternative ground state (checker-
board) for a comparison with the striped phase.

The (single-)stripe order consists of ferromagnetically 
arranged chains of iron atoms, with antiferromagnetic alig-
ment between neighboring chains. On the other hand, in the 
checkerboard antiferromagnetic order magnetic moments on 
all neighboring iron atoms in point in opposite directions.

For easier comparison with the nonmagnetic calculations, 
in our magnetic GGA + A calculations we use the same value 
of Ac and the same function f (r).

In the striped state, the peak in DOS occuring 50 meV 
below the Fermi level in GGA is shifted to 230 meV below 
the Fermi level when +A is included. However, there is no 
significant change in the value of DOS at the EF (figures 3(c) 
and (f)). However, in the checkerboard state within GGA + 
A we obtain the DOS at EF equal to 1.7 states eV−1 f.u.−1, 
which is about one sixth of the GGA result (see figures 3(b) 
and (e)). This suppression in the checkerboard state is due 
to the occurrence of a Jahn–Teller distortion in GGA + A, 
which is lowering the crystal symmetry from tetragonal to 
orthorhombic.

Eventhough within GGA + A DOS at EF is relatively small 
in the striped state (2.8 states eV−1 f.u.−1) the electron–phonon 
coupling is significantly larger than in the nonmagnetic case. 
We obtained λ = 0.90 (see table 2) in striped state which is  ∼60 
% larger than in GGA. As we said earlier, DOS in striped state 
is nearly the same in GGA and GGA + A. Therefore, strong 
enhancement of λ in GGA + A must originate from other 
sources, and not simply from increased DOS. However, the 
origin of this enhancement is not the focus of this paper, and it 
will be reported elsewhere.

5. Conclusion

Increasing the potential on iron atoms (making them slightly 
more repulsive for electrons) improves the relevant structural 
(such as arsenic height and iron-arsenic-iron angle), mag-
netic, and electronic properties of Ba0.6K0.4Fe2As2, as calcu-
lated within DFT. The main result of this paper is that with 
a corrected potential (+A) on iron atom, the heat capacity of 
Ba0.6K0.4Fe2As2 is increased more than threefold, in good 
agreement with experimental data. Applying the same correc-
tion to the magnetic states, we find that electron–phonon cou-
pling is strongly enhanced. This observation might be crucial 

Figure 2. Electronic band structures and Fermi surface of 
Ba0.6K0.4Fe2As2 in the nonmagnetic states both in GGA + A (panels 
(a) and (b)) and in GGA (c, d). Dominant orbital characters (defined 
in the single-iron unit cell) are represented in blue (dxy), red (dyz), 
green (dzx), black (dz2), and yellow (both dyz and dzx) color. High 
symmetry points in the Brillouin zone are defined in the two-iron 
unit cell. Reciprocal space axes k1 and k2 are perpendicular to the 
tetragonal c-axis.
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1 We used an × ×8 8 8 coarse k-mesh and a × ×4 4 4 coarse q-mesh. The 
kinetic energy cutoff is 180 Ry and the smearing value is 2 mRyd. As in 
the case of calculations done with SIESTA, a full structural relaxation is 
performed with Quantum-ESPRESSO and the potassium doping is treated 
within the virtual crystal approximation.
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in understanding the superconducting properties of iron-based 
superconductors.
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