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Theory of the Raman spectrum of rotated double-layer graphene
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We study theoretically the Raman spectrum of the rotated double-layer graphene, consisting of two graphene
layers rotated with respect to each other by an arbitrary angle θ . We find a relatively simple dependence of
the Raman G peak intensity on the angle θ . On the other hand, the Raman 2D peak position, intensity, and
width show a much more complicated dependence on the angle θ . We account for all of these effects, including
dependence on the incoming photon energy, in good agreement with the experimental data. We find that it is
sufficient to include the interaction between the graphene layers on the electronic degrees of freedom (resulting in
the occurrence of Van Hove singularities in the density of states). We assume that the phonon degrees of freedom
are unaffected by the interaction between the layers. Furthermore, we decompose the Raman 2D peak into two
components having very different linewidths; these widths are almost independent of the angle θ . The change in
the intensity and the peak position of one of these two components gives insight into the dependence of the overall
Raman 2D peak features as a function of the angle θ . Furthermore, we study the influence of the coherence on
the Raman signal, and we separately study the influence of the interaction between the layers on the electron
wave functions and energies. Additionally, we show regions in the phonon spectrum giving rise to the Raman 2D

peak signal. This work provides an insight into the interplay between the mechanical degree of freedom (angle
θ ) and the electronic degrees of freedom (singularities in the density of states) in rotated double-layer graphene.
Additionally, this work provides a way to establish experimentally the value of the rotation angle θ using Raman
spectroscopy measurement. This procedure becomes even more robust if one repeats the Raman spectroscopy
measurement with a different incoming photon energy.
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I. INTRODUCTION

The electronic band structure of a single graphene layer
near the Fermi level consists of Dirac-cone-like structure at
the Brillouin zone edge (K point). In this work, we study
the rotated double-layer graphene (also referred to as the
twisted bilayer graphene) which consists of two single layers
of graphene that are rotated with respect to each other by
an arbitrary angle θ . In the special case when θ = 0◦, the
Dirac cones from the two layers are exactly on top of each
other in reciprocal space. However, rotation of one of the
graphene layers in real space (θ �= 0◦) is accompanied by a
corresponding rotation of its band structure in reciprocal space
(around the origin of the reciprocal space). Therefore, when
θ �= 0◦ Dirac cones of the two graphene layers are no longer
on top of each other in reciprocal space but are separated,
proportionally, to ∼ sin θ/2. Nevertheless, the two Dirac
cones are still overlapping in a small region of reciprocal space
in-between the cones. From a perturbation theory argument,
one would expect that the interaction between the Dirac cones
of the two graphene layers will be particularly strong in region
where the Dirac cones are overlapping. Indeed, interaction
between the layers in the overlap region opens a hybridization
gap and leads to Van Hove singularities in the density of states
of the rotated double-layer graphene. Since the position of
the overlap region depends on the angle θ , we expect that
the rotated double-layer graphene will have an interesting
coupling between the mechanical degree of freedom (angle
θ ) and the electronic degrees of freedom (singularities in
the density of states). Many interesting properties of rotated
double-layer graphene arise from this tunability, and they have
recently been attracting a lot of interest.1–14

In this work, we study theoretically the influence of the
angle θ on the Raman spectrum of rotated double-layer
graphene. Raman spectroscopy is an experimental technique
commonly used to characterize carbon-based materials as
discussed in detail in Ref. 15. Since Raman spectroscopy
uses incoming photons with a well-defined energy, one can
use this spectroscopy to study selectively certain regions of
the electronic density of states. Therefore, we can expect an
interesting dependence of the Raman signal of the rotated
double-layer graphene as the angle θ is varied. Such a
dependence of the Raman signal was demonstrated in some
recent experimental studies.13,14,16–21

The two most prominent Raman signals in graphene-based
systems are the Raman G peak (close to 1600 cm−1) and
the Raman 2D (or G′) peak (close to 2700 cm−1). The
Raman G peak in the graphene-based systems is a simpler
process than the 2D peak since it involves creation of just one
phonon per each scattered photon. Considering momentum
conservation and assuming a negligible momentum of the
photon, we conclude that the created phonon must occur at
the Brillouin zone center. On the other hand, the Raman 2D

peak involves emission of two phonons per each scattered
photon. In this case, the momentum conservation implies that
the two emitted phonons have arbitrary but opposite momenta.
In this work, we study both of these Raman peaks (G and
2D) in the rotated double-layer graphene as a function of
angle θ . We find a relatively simple dependence of the Raman
G peak on the angle θ . Namely, when the incoming photon
energy is comparable to the separation between the Van Hove
singularities of the rotated double-layer graphene, there is a
significant increase (∼70) in the G peak intensity. On the
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other hand, the Raman 2D peak intensity, position, and width
show a much more complicated dependence on the angle θ .
All of these features, including the incoming light frequency
dependence, are well reproduced in our calculation and agree
well with experimental data (detailed comparison is shown in
Ref. 13). Furthermore, these results provide a simple way to
experimentally determine the angle θ of a rotated double-layer
graphene. The angle determination procedure becomes even
more robust if one performs Raman spectroscopy with two (or
more) different incoming photon energies.

We compute the Raman spectra of the rotated double-layer
graphene using a supercell tight-binding method. Additionally,
for the Raman 2D peak we confirm our findings using a
continuum model method. In the super-cell method, we choose
special values of θ for which there exists a superperiodicity
between the two graphene layers. In the supercell method,
we treat this enlarged commensurate supercell as a unit cell
of our system. On the other hand, in the continuum model
calculation, we rely on a simple Dirac equation description of
a single-layer graphene and we add interaction with the other
layer in the restricted Hilbert space. These continuum model
calculations are less numerically demanding than the supercell
calculations since they do not rely on the superperiodicity
between the two graphene layers. However, we expect that
the supercell tight-binding method is more reliable, and we
find that it compares better with experimental data. Unless
explicitly mentioned, the results reported here refer to the
supercell tight-binding method.

We provide details of both the supercell tight-binding
method and the continuum model method in Sec. II. In Sec. III,
we present results of the Raman G and 2D peaks’ calculations
in the rotated double-layer graphene case as a function of the
angle θ . We also provide a detailed analysis of these Raman
peaks in the rotated double-layer graphene.

II. METHODS

In the Raman process, the incoming photon creates a virtual
electron-hole pair which then emits (or in some cases, absorbs)
a phonon excitation quantum (or a quantum of some other
excitation). In the first-order Raman process, the interaction
of the single incoming photon results in the emission of a
single-phonon excitation. In the second-order Raman process,
two phonons are emitted for each interaction of the incoming
photon. For this reason, measurement of the spectrum of the
inelastically scattered outgoing photons is a sensitive probe of
the electron and phonon degrees of freedom in the sample.

Therefore, to describe theoretically the Raman spectrum of
the rotated double-layer graphene, we need to know its electron
and phonon band structures. Furthermore, we need to evaluate
the matrix element of the interaction between the electrons
and light, and of the interaction between the electrons and
phonons. In the remainder of this section, we describe how
we computed all of these quantities in the case of the rotated
double-layer graphene. For simplicity, we only compute the
Raman intensity in the rotated double-layer graphene relative
to the Raman intensity in the single-layer graphene. Therefore,
in our calculation we do not include explicitly numerical
prefactors common to these two cases.

A. Rotated double-layer graphene unit cell

We start by defining the geometry of the rotated double-
layer graphene unit cell. The single-layer graphene unit cell
consists of two carbon atoms (A and B) arranged in a
two-dimensional honeycomb lattice. The rotated double-layer
graphene consists of a stack of two single graphene layers
rotated with respect to each other by some angle θ . We define
the angle θ as follows. We start from two identical copies of
single-layer graphene, translated along the axis perpendicular
to the graphene plane. Next, we perform the rotation of one
of the layers by angle θ around the axis passing through one
of the carbon atoms. We refer to these two layers either as
the top and the bottom layer, or as L = 1 and L = 2 layer.

In the case of our supercell tight-binding method we work
with angles θ for which the resulting double-layer structure
is periodic. As shown in Ref. 2, every periodic double-layer
structure is characterized by a pair of integers p and q up to
a relative translation of layers. Furthermore, angle θ is related
to these integers as

θ = cos−1

(
3q2 − p2

3q2 + p2

)
. (1)

A few examples of the periodic double-layer structures are
shown in Fig. 1, and they all have a characteristic moire pattern
resulting from the misalignment of two periodic structures.
The primitive unit cell of the rotated double-layer graphene is
indicated by black hexagons in Fig. 1. As can be seen from
Fig. 1, the primitive cell of the rotated double-layer graphene
has a much larger area than the single-layer primitive cell
containing only two carbon atoms. As shown in Ref. 2, the
area of the unit cell of the rotated double-layer graphene is N

times larger than the single-layer unit-cell area, where N is
given as

N = gcd(p,3)

[gcd(p + 3q,p − 3q)]2
(3q2 + p2). (2)

Here, gcd(a,b) is greatest common divisor of integers a and
b. The smallest possible values of N compatible with Eq. (2)
are 7,13,19,31,37,43, and 49.

An N -fold increase of the real-space primitive cell is
accompanied with a folding of the electron and phonon band
structure in the reciprocal space. The folded Brillouin zone area
is smaller by a factor of 1/N as compared to the single-layer
Brillouin zone. The thick black hexagon in Fig. 2 shows the
Brillouin zone of the rotated double-layer graphene for two
choices of p and q, while the thick red and blue hexagons
indicate the single-layer Brillouin zones of the two individual
layers. As one can see from the figure, the rotated double-layer
graphene Brillouin zone in these two cases needs to be repeated
6 [for case from Fig. 2(a)] or 12 [Fig. 2(b)] additional times
in order to cover the same area as the underlying single-layer
graphene Brillouin zone. Corresponding real-space supercells
for these two Brillouin zones are shown in Figs. 1(g) and 1(h).

Throughout this paper, we use a convention in which the
wave vector from the Brillouin zone of the rotated double-layer
graphene is denoted by k. The reciprocal vector of the rotated
double-layer graphene is denoted by G. The wave vector for
the Brillouin zone of the two single-layer graphene sheets
will be denoted by k′ and k′′ for the two sheets, respectively.
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FIG. 1. (Color online) A few examples of the rotated double-layer
graphene for the special values of angle θ for which the structure
is superperiodic. Carbon atoms from the fixed graphene layer are
shown with the red dots. Blue dots indicate the carbon atoms in the
layer rotated by the angle θ . The unit cell (supercell) of the rotated
double-layer graphene is indicated with black lines. Integers p and q

for each case are indicated on top of each panel. Panel (a) corresponds
to the double-layer graphene in which layers are not misaligned with
respect to each other, θ = 0◦ (AA stacking). On the other hand, panel
(i) corresponds to the case in which the angle θ is maximal, θ = 60◦

(AB stacking). Panels (b) through (h) cover range of angles from 0◦

to 30◦: specifically, they are 9.43◦ (b), 13.17◦ (c), 15.18◦ (d), 16.43◦

(e), 17.90◦ (f), 21.79◦ (g), and 27.80◦ (h).

Corresponding reciprocal vectors of the single-layer graphene
sheets we will denote as G′ and G′′. We always assume
that vectors k, k′, k′′, G, G′, and G′′ are given in the same
coordinate system.

B. Electrons

We describe the electron wave functions in the rotated
double-layer graphene using a tight-binding model taking into
account interaction between the graphene layers. Low-energy
electronic excitations in graphene are well described by the
carbon π bonds. For this reason, our model includes only one
pz orbital per carbon atom which we will denote simply by
φ(r), for the carbon atom at the origin. We further assume
that the φ(r) orbitals at the two neighboring atomic sites are
orthogonal to each other

Using orbitals φ(r) we construct the Bloch-type tight-
binding basis functions χkj (r) for each k vector in the Brillouin
zone and for each site j in the rotated double-layer graphene
unit cell (supercell) as

χkj (r) =
∑

R

eik·(R+tj )φ(r − R − tj ). (3)

FIG. 2. (Color online) Unfolding of the rotated double-layer
Brillouin zone (thick black line) onto two single-layer Brillouin zones
(red and blue). Panel (a) corresponds to p = 1, q = 3, θ = 21.79◦,
N = 7 [corresponding real-space cell is shown in panel Fig. 1(g)],
while panel (b) corresponds to p = 3, q = 7, θ = 27.80◦, N = 13
[corresponding real-space cell is shown in Fig. 1(h)]. Arrows indicate
G vectors from the set G (see main text). Determination of the set
of vectors G is relatively easy for these choices of p and q, while it
becomes more involved for some other choices since some elements
of G must point outside of the single-layer Brillouin zone.

Since rotated double-layer graphene consists of two graphene
layers and the primitive unit cell of each graphene layer has two
carbon atoms (A and B), the unit cell (supercell) of the rotated
double-layer graphene has 4N carbon atoms. Therefore, index
j ranges from 1 to 4N . A sum is performed over all lattice
vectors R, while the coordinate of j th orbital in the primitive
unit cell is given by the vector tj .

The functions χkj (r) satisfy the periodicity requirement of
the Bloch theorem so we can write the mth electron eigenstate
ψm

k (r) simply as a linear combination of the basis functions
χkj (r):

ψm
k (r) =

∑
j

Cm
kjχkj (r). (4)

The band index m again ranges from 1 to 4N , while only half
(2N ) of these bands are assumed to be occupied for undoped
systems (as in the single-layer graphene case).

Next, by solving the Schrodinger equation for the electrons
in the χkj (r) basis, we obtain a set of Cm

kj coefficients at
each vector k of interest. In order to construct the Schrodinger
equation, we use the Slater-Koster parametrization from Ref. 3
fitted to the density functional theory calculation of the rotated
double-layer graphene. We also rescale all tight-binding
hopping parameters from Ref. 3 by 18% to account for the
GW computed self-energy effects.22–25

1. Unfolding of the electron states

We now describe a procedure in which one can rewrite (un-
fold) the rotated double-layer graphene electron wave function
in terms of the single-layer graphene basis functions. This pro-
cedure will be useful later in the computation of the electron-
phonon matrix element of the rotated double-layer graphene.

In a close relation to Eq. (3), let us now define the following
basis functions:

ξkα(r) =
∑
j→α

∑
R

eik·(R+tj )φ(r − R − tj ). (5)
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Here, α = (L,λ) is a composite index where L = 1,2 indexes
the graphene layers and λ = A, B indexes the A and B carbon
atoms. The sum over index j in Eq. (5) is performed over all
atoms of type α, i.e., over all A or B carbon atoms in either
the first or second graphene layer.

Functions ξkα(r) respect the periodicity of the single-layer
graphene sheet in the same way that χkj (r) respect the
periodicity of the rotated double-layer graphene. For this
reason, if we consider indices α from either the first or second
layer (L = 1 or 2), functions ξkα(r) become Bloch-type tight-
binding basis functions of the first or the second single-layer
graphene [in the same way in which χkj (r) are the basis
functions of the rotated double-layer graphene].

Computing the overlap between the rotated double-layer
graphene wave function ψm

k (r) and the single-layer graphene
basis function ξκα(r) gives

〈ξκα

∣∣ψm
k

〉 = nscδκ,k+GP m
kGα, (6)

where we have defined quantity P m
kGα as

P m
kGα =

∑
j→α

Cm
kj e

−iG·tj . (7)

In Eq. (6), the term δκ,k+G equals 1 only if κ and k differ by one
of the rotated double-layer reciprocal vector G, while nsc is
the total number of the supercells in the entire sample. Since the
|ξκα〉 basis is complete, Eq. (6) implies that the electron wave
function |ψm

k 〉 of the rotated double-layer graphene can be
rewritten (unfolded) in terms of the basis functions |ξk+Gα〉 of
the single-layer graphene (here G are the reciprocal vectors of
the rotated double-layer graphene). Furthermore, the unfolding
amplitude of the rotated double-layer graphene electron wave
function |ψm

k 〉 in terms of the single-layer graphene basis
function |ξk+Gα〉 is given by the quantity P m

kGα defined in
Eq. (7).

We perform the unfolding procedure on a fixed set of G
vectors G such that the following two constraints are satisfied.
First, vectors k + G with two different choices of G from the
setG never differ from each other either by G′ or G′′ (reciprocal
vectors of two single-layer graphene sheets), as this would lead
to double counting. Second, every unique single-layer wave
vector k′ or k′′ can be written as k + G for some G from G
and k from the double-layer graphene Brillouin zone. Black
arrows on Fig. 2 indicate two examples of a set of G vectors
G satisfying these constraints.

C. Phonons

In this work, we assume that the interaction between the two
layers of graphene does not affect the phonon band structure
of the rotated double-layer graphene. Nevertheless, working
in the Brillouin zone of the rotated double-layer graphene,
we need to take into account that the set of the single-layer
phonons at wave vectors q + G are folded to the wave vector
q for all G from G. Unlike for the electron states, which
do get affected by the interaction between the two graphene
layers, here the unfolding procedure corresponds simply to
the relabeling of states. In the folded double-layer Brillouin
zone, we denote phonon states with the wave-vector label
q and the branch label ν. On the other hand, in the unfolded
single-layer Brillouin zone, this same phonon would be labeled

with wave vector q + G with vector G chosen from the set G.
Therefore, labels ν and G are interchangeable for a unique
phonon branch (corresponding, for example, either to the G or
the 2D peak) of the single-layer graphene.

In our calculations of the Raman G peak we use the
phonon frequency of the G phonon to equal 1561 cm−1, as
found in Ref. 26. The G phonon atomic displacement pattern
can uniquely be determined from the representation theory
analysis of the graphene space group.

Calculation of the Raman 2D peak is more complex than
that of the G peak since it involves emission of two phonons
with arbitrary (and opposite) momentum. For this reason,
we need information about the 2D phonon frequencies in
a relatively large region of the phonon Brillouin zone close
to the K point (phonons far away from the K point give
negligible contribution to the Raman 2D peak). It was shown
in Ref. 27 that the Raman 2D peak profile relies strongly on
the compensation between the phonon and the electron trigonal
warpings, which are shown to be of a different sign. Therefore,
the Raman 2D spectrum in graphene is very sensitive to the
details of the phonon band structure. For this reason, we use
as an input to our calculations a high-order polynomial fit
to the computed 2D phonon frequencies from Ref. 27, and
we include the computed trigonal warping effect. Atomic
displacements of 2D phonons are inferred only at the K (and
K ′) points of the Brillouin zone by the representation theory
analysis. The atomic displacement pattern of the phonons near
the K (or K ′) point is approximated by the displacement
pattern at the K (or K ′) point.

D. Electron-light interaction

In the weak-field approximation,28 interaction of electrons
with light is given by the following operator:

H light = ie

m
A · ∇, (8)

where A is the vector potential of the electromagnetic field of
light in the Coulomb gauge (h̄ = 1). Therefore, the matrix
element of this operator between two electron states 〈f |
and |i〉 up to a constant equals P · 〈f |∇|i〉, where P is
the polarization direction of the incoming or outgoing light.
Expressing electron states 〈f | and |i〉 in terms of the basis
functions φ(r) we are left with computing 〈φ|∇|φ′〉 where
〈φ| and |φ′〉 are the tight-binding basis orbitals φ(r) at the
different atomic sites. We work under the approximation29 that
the matrix element 〈φ|∇|φ′〉 is exactly zero between 〈φ| and
|φ′〉 that are not on the first-neighbor sites in the same graphene
layer. Additionally, assuming pz-like symmetry of the φ(r)
orbitals, one can easily show that under this approximation all
matrix elements 〈φ|∇|φ′〉 can be determined up to a single
constant prefactor.

E. Electron-phonon interaction

Interaction between electrons and phonons H
ph
qν is described

in terms of the deformation potential δVqν . The deformation
potential is defined as a change in the effective potential
experienced by electrons as a result of the phonon excitation
from the νth phonon branch with a wave vector q. Similarly
as in the case of an electron-light interaction, using symmetry
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and taking into account the interaction between the nearest
neighbors, the electron-phonon matrix elements can be com-
puted up to a constant prefactor for both G and 2D phonon
modes.

Since we assumed no changes to the phonon band structure
coming from the interaction between the graphene layers,
we compute the electron-phonon matrix element using the
same electron-phonon interaction operator as in the case of
a single-layer graphene. We start from the electron-phonon
matrix element between any two rotated double-layer graphene
states 〈k|dl and |k + q〉dl (dropping electron band indices)

〈k|dlH
ph
qν |k + q〉dl. (9)

Next, we express the rotated double-layer states in the basis
of the single-layer states using Eqs. (6) and (7) (we absorb
coefficients P m

kGα into 〈. . . |sl and | . . .〉sl for simplicity):⎡
⎣ ∑

G1∈G
〈k + G1|sl

⎤
⎦H ph

qν

⎡
⎣ ∑

G2∈G
|k + q + G2〉sl

⎤
⎦ . (10)

Furthermore, here we also drop sum over α for simplicity.
Remembering that the branch index ν for the folded phonon
band structure is just a relabeling of vectors G3 from the set G
we can write the electron-phonon matrix element as∑

G1∈G

∑
G2∈G

〈k + G1|slH
ph
q+G3

|k + q + G2〉sl. (11)

Next, as we mentioned earlier, we assume that the electron-
phonon interaction operator in the rotated double-layer
graphene is the same as in the single-layer graphene. For
this reason, the electron-phonon matrix operator conserves the
crystal momentum of the single-layer graphene. Therefore,
only one of the G3 vectors will give a nonzero contribution to
the electron-phonon matrix element∑

G1∈G

∑
G2∈G

〈k + G1|slH
ph
q+G2−G1

|k + q + G2〉sl. (12)

F. Raman intensity

Using standard perturbation technique methods,27,30 one
can show that the intensity of the outgoing photon at frequency
ωout for the first-order Raman process can be computed as

I1(ωout) ∼
∑

ν

∣∣∣∣∣
∑
AB

Kν
AB

∣∣∣∣∣
2

δ
(
ωin − ων

0 − ωout
)
, (13)

while for the second-order Raman process it is given by

I2(ωout) ∼
∑
qνμ

∣∣∣∣∣
∑
ABC

K
qνμ

ABC

∣∣∣∣∣
2

δ
(
ωin − ων

−q − ωμ
q − ωout

)
.

(14)

Here, frequency of the νth (μth) phonon branch with the
momentum q is denoted as ων

q (ωμ
q ), while the incoming light

frequency is denoted as ωin. Furthermore, here for simplicity
we always assume that the phonon-dependent terms (phonon
frequencies, electron-phonon matrix elements) appearing in
the first-order Raman process are due to the G mode, while
those appearing in the second-order Raman process are due

to the 2D mode. Scattering amplitudes Kν
AB and K

qνμ

ABC are
summed over all virtually excited states A, B, and C. The sum
in Eqs. (13) and (14) is performed coherently over the electron
states and incoherently over the phonon states. Delta functions
ensure the conservation of energy.

In both Eqs. (13) and (14), we focus only on the processes
involving emission, not absorption, of phonons, and we
work at zero temperature. Furthermore, we are neglecting
the momentum of the photon. Therefore, to conserve total
momentum, the emitted phonon in the first-order Raman
process must have zero momentum. In the second-order
process momentum of one phonon (q) must be compensated
by that of the other phonon (−q). For this reason, the first sum
in Eq. (13) is performed over zero-momentum phonons, from
arbitrary phonon branch ν. Similarly, the first sum in Eq. (14)
is performed over all pairs of phonons with momenta q and
−q, from possibly different phonon branches ν and μ.

Scattering amplitudes Kν
AB and K

qνμ

ABC are most easily
represented graphically using Feynman diagrams as in Figs. 3
and 4. Explicit expressions for these diagrams can be found in
Refs. 30 and 27; here, we provide as an example contribution

FIG. 3. Feynman diagrams included in the first-order Raman
calculation for the Raman G peak. Time is increasing from the left to
the right, photons are indicated with wavy line, while the phonon is
shown with the dashed line. Electrons and holes are drawn with arrows
in the opposite direction with respect to time. Explicit expression for
the diagram in panel (a) is given in Eq. (15).
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FIG. 4. Feynman diagrams included in the second-order Raman
calculation for the Raman G peak. Conventions are as in Fig. 3.
Explicit expression for the diagram in panel (a) is given in Eq. (16).

from Fig. 3(a) for the first-order Raman process

Kν
kmno = 〈kn|H light

out |k 
o〉〈k


o|H ph

0ν |k 
m〉〈k


m|H light

in |kn〉

·
(

ωin − ων
0 − εo

k + εn
k − i

γ

2

)−1

·
(

ωin − εm
k + εn

k − i
γ

2

)−1

. (15)

Similarly, we also provide an explicit expression for the
contribution of the second-order Raman process from Fig. 4(a):

K
qνμ

kmnop = 〈k + qo|H light
out |k + q


p〉〈kn|H ph

qμ|k + qo〉
·〈k + q


p|H ph

−qν |k

m〉〈k


m|H light

in |kn〉

·
(

ωin − ων
−q − ωμ

q − ε
p

k+q + εo
k+q − i

γ

2

)−1

·
(

ωin − ων
−q − ε

p

k+q + εn
k − i

γ

2

)−1

·
(

ωin − εm
k + εn

k − i
γ

2

)−1

. (16)

Electron band indices in Eqs. (15) and (16) are m,n,o,p, while
the phonon branch indices are ν and μ. Electron eigenenergy
at wave vector k and for the band m is indicated with εm

k . The
sum of the electron and the hole linewidth is given by γ , which
we discuss in more detail in Sec. II G. Empty electron states in
Eqs. (15) and (16) have the symbol “” over their band indices.

We find that it is important to include all of the first-order
diagrams for the Raman G peak (as shown in Fig. 3). For the
2D peak, we include only diagrams shown in Fig. 4 since other
permutations give much smaller contributions in the case of a
single-layer graphene (see Ref. 27 for more details).

G. Remaining parameters

Here, we discuss remaining parameters and calculation
details used in this work. For the electron and hole linewidth
γ appearing in Eqs. (15) and (16) for the Raman G and
2D peak intensities, we use γ

2 = 190 meV and γ

2 = 201
meV for the 1.96- and 2.41-eV photon energy calculations,

respectively, independent of electron wave vector k. We
choose this value of electron and hole linewidth in order to
reproduce the Raman G peak enhancement factor (discussed
later, in Sec. III B) consistent with experiments done with
1.96-eV incoming photon energy.13 Nevertheless, we find this
value to be somewhat consistent with the sum of linewidths
coming from the electron-phonon27 (32 and 43 meV for 1.96-
and 2.41-eV photon energy calculations, respectively) and
electron-electron interaction [∼100 meV (Ref. 31)]. Using
the electron linewidth coming just from the electron-phonon
interaction (as done in Ref. 27) would have resulted in a
much larger Raman G peak enhancement. The linewidth γ

2
used for the 2.41-eV incoming photon energy calculation
was computed from the value for the 1.96-eV incoming
photon energy by including the difference in the estimated
electron-phonon linewidths (43−32 meV = 11 meV).

To speed up the convergence of the Raman calculation in the
case of a rotated double-layer graphene, we interpolate various
electron and phonon quantities from a coarser reciprocal
space grid onto a finer grid. Furthermore, we neglect Raman
amplitudes for which unfolding intensity, electron-light matrix
element, or electron-phonon matrix element fall below a
certain threshold value. We check that our results are fully
converged with respect to this threshold.

H. Continuum model method

In this work, we also make use of the continuum model
developed in Ref. 5, in order to confirm our supercell
tight-binding-based calculation of the Raman 2D peak. The
continuum model, as compared to the supercell tight-binding
method, uses an electron wave function in the restricted Hilbert
space. The Brillouin zone folding in the supercell tight-binding
calculation implies that the interaction between the graphene
layers introduces hybridization between states at N different
wave vectors (state with wave vectors k is hybridized with
states k + G, G ∈ G). On the other hand, in our continuum
model, we select only a subset of vectors G from G for which
the interlayer hybridization is the strongest. In particular, a
state with wavelength k′ in layer L = 1 hybridizes only with
the electron states in layer L = 2 with wavelength k′ + G′.
In the case of our continuum model calculation, we consider
three reciprocal vectors G′ of layer L = 1 for which the norm
|k′ + G′| is minimized. This approximation can be justified
with a perturbative calculation, as in Ref. 5.

Furthermore, as compared to the supercell tight-binding
calculation, in our continuum model calculation we are using
a simple parametrization5 of the interaction strength between
the graphene layers that depend on only one parameter c.
Additionally, in our continuum model we neglect trigonal
warping of the single-layer graphene band structure, and
assume perfectly linear Dirac cone band structure parametrized
with the band velocity vF. Following Ref. 5, we take vF =
106 m/s and c = 0.11 eV. Since we neglect the trigonal
warping effect, Raman G peak intensity vanishes in the
continuum model. This is because the electron-phonon matrix
elements change sign under the operation K + κ → K − κ

in the continuum model,32 where K is the Dirac point of
single-layer graphene. The product of the electron-light matrix
elements and the energy denominators in Eq. (15) does not
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change under this operation in the continuum model. The sum
over scattering amplitudes in Eq. (13) therefore vanishes in the
continuum model without trigonal warping. For this reason, we
use the continuum model only to compute the Raman 2D peak.

The electron-light matrix element, the electron-phonon
matrix element, and the Raman intensity in the continuum
model are computed as in the supercell-based method. We use
the same value of the electron linewidth in the two calculations.

III. RESULTS AND DISCUSSION

In this section, we present results of our calculations of the
Raman spectra in the rotated double-layer graphene.

A. Electronic structure

We start with a discussion of the electronic structure of
the rotated double-layer graphene. The density of states for
varying angles θ is given in Fig. 5 with thin gray lines, while
that for the single-layer graphene is given with a thick black
line. The density of states of the single-layer graphene in this
range of energies linearly increases with the energy as one
moves away from the Fermi level (Fermi level is at the zero
energy in Fig. 5). This linear dependence of the density of states
originates from the well-known Dirac cones at the Brillouin
zone corners of the single-layer graphene band structure.

The two graphene layers in the rotated double-layer
graphene are rotated with respect to each other by an angle θ .
For this reason, the Dirac cones from each layer are not exactly
on top of each other (in the reciprocal space) but are instead
rotated with respect of each other by the angle θ . Therefore,
the two Dirac cones are overlapping only in a small region
of the reciprocal space, and position of this overlap in the
reciprocal space depends on the angle θ . In this overlap region,

FIG. 5. Density of states in our supercell tight-binding model
near the Fermi level (at the zero energy) for the rotated double-layer
graphene at varying angles θ from 6.0◦ to 17.9◦. Lighter gray lines
correspond to larger values of θ . For each θ we find two large Van
Hove singularities next to each other, with similar energy. Steplike
singularity arises from the energy maximum or minimum (as a
function of momentum), while the logarithmic divergence arises from
the energy saddle point. As angle θ is increased, these singularities
move further away from the Fermi level (compare lighter and darker
gray lines in the figure). Thick black line is showing the density of
states of a single-layer graphene, multiplied by two, so that it can be
compared more easily to the rotated double-layer graphene case.

interaction between the two layers opens a hybridization gap,
which in turn leads to the occurrence of prominent Van Hove
singularities both in the occupied and empty states, whose
position again depends on θ . For example, in the θ = 6.01◦
case, Van Hove singularities occur near ±0.5 eV, while for the
θ = 13.17◦ case Van Hove singularities occur near ±1.0 eV.

B. Raman G peak

As shown in Fig. 5, the energy at which the Van Hove singu-
larities occur in the rotated double-layer graphene depends on
the angle θ . For larger values of θ , the Van Hove singularities
occur further away from the Fermi level. In particular, for
the larger values of angle θ the Van Hove singularity of the
occupied states are moved to lower energies, while those of the
empty states are moved to the larger energies. When separation
between the Van Hove singularities of the empty and occupied
states matches the incoming photon energy, we expect to see
changes of the rotated double-layer graphene Raman spectrum.
Angle θ for which the incoming photon energy is close to the
separation between the Van Hove singularities we will refer to
as the critical angle.

The computed Raman G peak intensity in the rotated
double-layer graphene is given in Fig. 6 as a function of angle
θ for two different incoming photon energies (black and red
line). The Raman G peak intensity in Fig. 6 is given in terms
of the intensity of a single-layer graphene. We find a ∼70 fold
enhancement of the Raman G peak intensity at angles θ close
to the critical angle 10◦ (1.96-eV incoming photon energy,
black line in Fig. 6). At angles below and above this critical
angle, we find that the Raman G peak enhancement factor is
close to 2. Therefore, in that region of angles θ Raman signal

FIG. 6. (Color online) Calculated Raman G peak intensity as a
function of angle θ for two incoming photon energies [1.96 eV in
black and 2.41 eV in red (gray)]. The range of angle θ shown is from
0◦ to 30◦. For range 30◦ < θ < 60◦, we find almost the same Raman G

peak intensity for θ = 30◦ + � as for the θ = 30◦ − � case. Intensity
is measured relative to a single-layer graphene. We find ∼70 fold
enhancement in the Raman G peak intensity for 1.96-eV incoming
photon energy near the critical angle 10◦. This enhancement shifts
to the higher angles θ for higher incoming photon energy (2.41 eV),
consistent with shift in the Van Hove singularity. At angles away from
both sides of the critical angle, we find Raman G peak enhancement
close to 2 (as would be expected in the limit of no interaction between
the layers). Comparison with experimental data (in good agreement
with our calculation) is shown in Ref. 13.
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of the rotated double-layer graphene is almost the same as that
of two independent graphene sheets. Furthermore, we also find
that the G peak enhancement shifts to the higher angles θ with
higher incoming photon energy (red line in Fig. 6). This behav-
ior we attribute to the shift in the energy of the Van Hove sin-
gularity as a function of angle θ , as observed already in Fig. 5.

Unlike the Raman 2D peak, the Raman G peak in graphene
is a single-phonon process and therefore its width and peak
position depend solely on the phonon lifetime and frequency.
We assumed in our calculation that the phonon lifetime and
frequency are not affected by the interaction between the two
graphene layers. For this reason, the Raman G peak width and
position are independent of the angle θ , in agreement with
experimental observations in Ref. 13.

We find a very strong dependence of the Raman G peak
enhancement at the critical angle on the effective electron
and hole linewidth γ appearing in Eq. (15). Dependence of
the Raman G peak enhancement at the critical angle on the
value of parameter γ is shown in Fig. 7. The dotted line in
Fig. 7 is a fit to the function ∼γ −2. As already mentioned in
Sec. II G, due to this strong dependence of the Raman G peak
enhancement on γ , we have chosen the value of γ which gives
Raman G peak enhancement in agreement with experiment
at 1.96-eV incoming photon energy. Nevertheless, the value
of γ we obtained is consistent with that obtained from the
electron-phonon and electron-electron interaction estimates.

In the Raman calculations of phonon excitations, it is a
common15 practice to neglect the A2 term in the electron-
light interaction Hamiltonian [as in Eq. (8)]. However, Ref. 33
claims that under certain conditions A2 terms are important
for the Raman G peak process. Since these conditions are not
satisfied in a typical experimental situation (ωin ∼ 2 eV, as in
Ref. 13, and assuming γ = 0 would lead to a divergent G peak
enhancement, see Fig. 7) we refer inclusion of the A2 term to
the future work, as it would go beyond the scope of this paper.

1. Influence of coherence

We find a large influence of coherence (interference) in
the calculation of the Raman G peak. (Similar observation

FIG. 7. Dependence of the Raman G peak enhancement (relative
to a single layer) at the critical angle on the electron and the
hole lifetime γ . The incoming photon energy in this calculation
equals 1.96 eV. Fitted functional dependence of the Raman G peak
enhancement (Genh) is indicated with a dotted line, and equals
Genh = 2.58(eV2)(γ /2)−2.

FIG. 8. (Color online) Raman intensity for the G peak of a
single-layer graphene computed in four different ways. Horizontal
axis shows the difference in the electronic energies �E appearing
in the energy denominators of the Feynman diagrams as in Eq. (15).
The vertical axis shows the Raman G peak intensity if the sum (13)
is performed only using electron-hole pairs separated in energy up
to �E. Dotted lines show the results when the sum in Eq. (13) is
performed incoherently over electron and hole states. Both dotted
lines are downscaled 300 times in intensity. Solid lines show the
results when the sum is performed coherently. Blue (gray) lines show
results when the sum is performed only over two Feynman diagrams
shown in Figs. 3(a) and 3(b), while black lines shows results when
the sum is performed over all 12 Feynman diagrams. Comparing the
solid black line to the other three lines, we see the influence of the
coherence in the electronic sum in Eq. (13), the influence of all 12
Feynman diagrams from Fig. 3, and the influence of performing the
sum up to energies larger than the incoming photon energy ωin (in
this calculation, ωin = 1.96 eV).

was found in Ref. 33.) This is true both for the coherence
between different Feynman diagrams (shown in Fig. 3) and
for the coherence between different electronic states appearing
in Eq. (13). The influence of both of these coherences is
illustrated in Fig. 8. Figure 8 shows four different ways the sum
given in Eq. (13) is performed. The horizontal axis of Fig. 8
shows the difference in electronic energies (�E) appearing in
the energy denominator as in Eq. (15). The vertical axis of
Fig. 8 shows the value of the Raman G peak intensity, if the
sum in Eq. (13) is performed over all pairs of electronic states
with energy separation up to �E. The dotted lines in Fig. 8
show the Raman intensity for the Raman G peak if the coherent
sum appearing in Eq. (13), | ∑AB Kν

AB |2, is replaced with an
incoherent sum (

∑
AB |Kν

AB |)2. The solid lines show results
for when the sum is performed coherently, as in Eq. (13).
Additionally, dotted lines are downscaled 300 times in Fig. 8
so that they can be compared more easily to the coherent result.
Blue (gray) lines in Fig. 8 represent Raman G peak intensity
when the sum in Eq. (13) is performed only over two Feynman
diagrams shown in Figs. 3(a) and 3(b), while black lines show
results for all 12 first-order diagrams in Fig. 3.

From Fig. 8, we can reach several conclusions about the
Raman G peak in graphene. First, we find that the coherence
in Eq. (13) between different electronic states leads to the
suppression of the Raman G peak intensity by more than
300 times. Second, in order to achieve the fully converged
result, we find that the sum in Eq. (13) has to be performed
over electron-hole pairs separated in energy more than the
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incoming photon energy ωin (1.96 eV in the case of Fig. 8).
This is especially true for the coherent calculation (solid lines).
Third, we find that if the sum in Eq. (13) is performed only
up to the energies close to the incoming photon energy ωin,
that the sum is dominated by two diagrams shown in Figs. 3(a)
and 3(b). However, if the sum in Eq. (13) is continued to the
energies larger than ωin, Feynman diagrams from Figs. 3(c) to
3(l) start to dominate (compare the solid blue and black lines
in Fig. 8).

C. Raman 2D peak

Similarly as in the case of the Raman G peak, we expect to
see changes in the Raman 2D peak when the angle θ is close
to the critical angle. In fact, we find an even more complicated
dependence of the 2D Raman peak on angle θ than that of the
Raman G peak.

Comparing the first-order Raman calculation (as for the
Raman G peak) given in Eq. (13) to the second-order Raman
calculation (as for the 2D peak) given in Eq. (14), we see
that in the latter case the sum is performed over all phonon
momenta q in the entire phonon Brillouin zone. Phonons
at different momenta q have different frequency ων

q , which
in general would lead to the Gaussian-type spread in the
Raman intensity I2(ωout), even if the phonon lifetime is infinite.
This observation is not true for the Raman G peak since it
involves only a single-phonon frequency ων

0 , and therefore its
Lorentzian-type width comes solely from the finite phonon
lifetime, and its peak position is determined by ων

0 .
The supercell tight-binding method computed Raman 2D

peak position, intensity, and width in the rotated double-layer
graphene are given in Fig. 9. For all three features of the
2D peak, we find a complex variation as a function of the
angle θ , especially so near the critical angle (∼10◦ for 1.96-eV
incoming photon energy). Similarly as in the case of the Raman
G peak, we find that these features shift to the larger angle θ

if the incoming photon energy is increased. Again, as in the
case of the Raman G peak, this behavior is consistent with
the angle-θ -dependent position of the Van Hove singularities
shown in Fig. 5.

The position of the Raman 2D peak in Fig. 9 is indicated
relative to the single-layer graphene case at the same incoming
photon energy (since even for the single-layer case the Raman
2D peak position depends on the incoming photon energy).
We find that the position of the Raman 2D peak of the rotated
double-layer graphene is shifted to the larger energies with
respect to the single-layer graphene case. The observed shift
is nonmonotonic, starting out small (∼4 cm−1) at large angles
(>20◦). Close to the critical angle ∼10◦ (for 1.96-eV incoming
photon energy) the shift in the peak position increases to ∼14
cm−1 and is followed by a steep drop to ∼4 cm−1 at about
7◦. At even lower angles (<7◦), there is a steep rise in the 2D

peak position.
The intensity of the Raman 2D peak is somewhat less

complicated than the peak position and the peak width. The
Raman 2D peak intensity shows almost a steplike change
close to the critical angle ∼10◦ (for 1.96-eV incoming photon
energy), having an intensity comparable to two independent
single layers at higher angles, and ∼4 times smaller intensity
at the smaller angles.

The width of the Raman 2D peak at angles above 15◦
(for 1.96-eV incoming photon energy) is comparable to that
of a single-layer graphene, ∼31 cm−1. At the smaller angles
(<15◦), there is a sharp increase in the Raman 2D peak width.
Additionally, close to 8◦ Raman 2D peak width suddenly
jumps to 52 cm−1. Below 8◦ there is again a nonmonotonic
behavior of the width, starting with a decrease followed by a
sharp increase below 6◦.

The results of the continuum model calculation of the
Raman 2D peak in Fig. 10 show similar overall features as
the supercell tight-binding calculations. The angle dependence
of the peak position, intensity, and width follow the same
trends in both calculations, but the numerical values are
somewhat different. In addition, there are some spurious
features present in Fig. 10 that are not present in the supercell
tight-binding calculation. For example, the Raman 2D peak
intensity and width in the region from θ = 5◦ to 15◦ show
some small features not present in the supercell tight-binding
calculation. We expect that these differences are occurring due
to the approximations introduced into the continuum model
calculation (see Sec. II H). In particular, the lack of the trigonal
warping in the continuum model becomes especially important
at large energy of the incoming photons and for large angle θ .
Additionally, the reduction of the Hilbert space becomes more
important at low angles θ .

1. Procedure to experimentally determine angle θ

The dependence of the position, the intensity, and the width
of the Raman 2D peak on the angle θ provide a simple route to
experimentally determine angle θ . However, for some range
of values of θ , the position and the width of the Raman 2D

peak depend nonmonotonically on the angle θ . Naively, one
would expect that this would make it impossible to uniquely
determine θ in that range of angles. Nevertheless, combining
all three properties of the Raman 2D peak (position,
intensity, and width) makes it easier to uniquely assign angle
θ . Furthermore, combining Raman measurements at two
different incoming photon energies gives an additional way
to uniquely determine the angle θ even in the region where
the position and the width of the Raman 2D peak depend
nonmonotonically on θ . For example, if one measures for
the incoming photon energy of 1.96-eV change in the Raman
2D peak position of 8 cm−1, according to the black line in
Fig. 9 this measurement can correspond to an angle θ of ∼5◦,
∼10◦, or ∼15◦. However, if one repeats the measurement on
the same sample with a larger incoming photon energy (for
example, 2.41 eV as shown by the red line in Fig. 9) and the
change in the Raman 2D peak position becomes smaller than
8 cm−1, angle θ can be assigned uniquely to ∼10◦. On the other
hand, if the Raman 2D shift becomes larger than 8 cm−1, then
θ is either ∼5◦ or ∼15◦. Since these two angles are quite far
apart (by construction), other Raman 2D features like intensity
or width can be used to determine which of the two angles
should be assigned. A similar procedure can also be used for
the nonmonotonic dependence of the Raman 2D peak width.

2. Decomposition into contributing phonons

According to Eq. (14), the second-order Raman process (as
for the Raman 2D peak) can be decomposed into a decoherent
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FIG. 9. (Color online) Supercell tight-binding model calculated
position, intensity, and width of the Raman 2D peak. Black line
indicates results for the incoming photon energy of 1.96 eV, while
the red (gray) line shows results for the incoming photon energy of
2.41 eV. Horizontal axis gives angle θ of the rotated double-layer
graphene. The range of angle θ shown is from 0◦ to 30◦. For range
30◦ < θ < 60◦, we find almost the same Raman G peak intensity
for θ = 30◦ + � as for the θ = 30◦ − � case. To be consistent with
Ref. 13 and other experimental work, the fit was performed to the
Lorentzian function. Similar results (especially for the position and
the intensity) are obtained by a fit to the Gaussian function (see black
line in Fig. 14). Intensity is defined as the area under the peak (not
peak height). Width is defined as the full width at half of the peak
maximum (FWHM). Peak intensity and peak position are defined
relative to a single-layer graphene. See main text for more details.
Comparison with experimental data (in good agreement with our
calculation) is shown in Ref. 13.

sum of contributions coming for the pair of phonons (q,μ)
and (−q,ν) with opposite momenta q and possibly different
phonon branches μ and ν. Since the phonon branches of the 2D

mode arise from the Brillouin zone folding, branch indices μ

and ν can be relabeled with the rotated double-layer graphene
reciprocal vectors G (as discussed in Sec. II C).

Figure 11 shows regions of the phonon Brillouin zone which
contribute the most to the Raman 2D peak, for varying angle
θ . Contributions from the phonon pair (q,μ) and (−q,ν) are
equally distributed among the unfolded vectors q + G with
reciprocal vector G corresponding to both μ and ν. The

FIG. 10. (Color online) Position, intensity, and width of the
Raman 2D peak using a more approximate method (continuum
model). Conventions are the same as in Fig. 9, but the range of
vertical scales is not the same as in Fig. 9.

Brillouin zone of both bottom (solid line) and top (dashed
line) single-layer graphene are indicated with black lines. For
simplicity, only contributions from phonons in one graphene
layer are shown in Fig. 11, and only the region close to the
Brillouin zone corner (K point) is shown.

For large values of angle θ [for example, θ = 27.80◦ in
Fig. 11(h)], we find a characteristic triangular region (red) in
the phonon Brillouin zone around the K point with the largest
contribution to the Raman 2D peak. Similar behavior we find
in the calculation of a single-layer graphene, as consistent
with the decomposition found in Ref. 27. At angles smaller or
equal to the critical angle, this triangular region is significantly
modified. The largest modification we find when the K point
of the Brillouin zone of the top graphene layer is overlapping
with the triangular region in the bottom layer [see, for example,
Fig. 11(e)]. As shown in Fig. 12, this modification occurs
precisely at the critical angle, at which the Dirac cones in the
electron Brillouin zone are overlapping.

3. Peak substructure, two Gaussian components of the 2D peak

Our calculations show that the profile of the Raman 2D

peak [I2(ωout) in Eq. (14)] can be well fitted with two Gaussians
with varying position, intensity, and width of each Gaussian
function (compare black and yellow lines in Fig. 13). We
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FIG. 11. (Color online) Regions of the phonon Brillouin zone contributing the most to the Raman 2D peak, with characteristic triangular
regions around the Brillouin zone K point. Region that contributes the most to the Raman 2D peak is shown in red color. Region of the
Brillouin zone with intermediate intensity is shown in yellow, and that of zero intensity in blue. Color scale for each panel is scaled individually
to the largest intensity for that panel since otherwise the overall intensity of the panels for small angles would be too small (see Fig. 9 showing
decrease of the Raman 2D peak intensity at small angles θ ). The Brillouin zone of the bottom (solid line) and the top (dashed line) graphene
layers is indicated. Contributions to the 2D peak of only one layer (bottom) are shown for simplicity, and we only show the region of the
Brillouin zone close to the K point (approximately the same region is indicated with dashed line in Fig. 12). The angle θ is increasing going
from panel (a) to panel (h) and it equals 4.41◦ (a), 7.93◦ (b), 8.61◦ (c), 9.43◦ (d), 10.42◦ (e), 11.64◦ (f), 13.17◦ (g), and 27.80◦ (h). Calculation
is performed with the incoming photon energy of 1.96 eV. Large transfer of weight is seen close to the critical angle in panel (e) when the
Brillouin zone K point of the top layer is overlapping with the triangular region in the phonon Brillouin zone.

find this to be true both for the single-layer graphene and
for the rotated double-layer graphene. For the single-layer
graphene importance of using two Gaussians as opposed to
only one is more subtle. However, for the rotated double-layer
graphene just below the critical angle, positions of these two
Gaussians are somewhat apart from each other, leading to
the more pronounced two-peak feature. A similar feature has
been found in the experimental measurements, near the critical

angle.34 Furthermore, these two Gaussian components of the
Raman 2D peak behave differently as a function of angle θ

which will be of interest in analyzing angle-θ -dependent data
for the rotated double-layer graphene.

First, let us analyze these two Gaussian components in the
case of a single-layer graphene. We find that these Gaussian
components in this case are centered around nearly the same
frequency (difference is only 3.5 cm−1 at 1.96-eV incoming

FIG. 12. (Color online) Panel (a) shows the sketch of the overlapping Dirac cones of the two graphene sheets (shown in red and blue).
Dirac cones are centered at the Brillouin zone edge points K of each graphene layer. Black arrows indicate the overlap region in which the
interaction between the graphene layers introduces a hybridization gap in electron and hole states. Panel (b) shows the sketch of the isoenergy
curves (for both layers) in the electron Brillouin zone separated in the energy by the amount equal to the incoming photon energy. The angle θ

is close to the critical angle. Brillouin zone of each layer is indicated with red and blue hexagons. Overlap region is indicated with the black
arrow, as in panel (a). Panel (c) shows the sketch of the nesting vectors in the phonon Brillouin zone connecting two Dirac cones in the electron
Brillouin zone (corresponding to the same graphene layer). By construction, phonon nesting vectors have opposite trigonal warping to that of
the electrons and are twice as far away from the Brillouin zone edge point K . Approximately the same region of the phonon Brillouin zone as
in Fig. 11 is indicated with a dashed line.
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FIG. 13. (Color online) Comparison of a single Gaussian fit (thin
red line) and a two-Gaussian fit (thin yellow line) of the calculated
Raman 2D profile (thick black line) for the single-layer graphene (left
panel) and the rotated double-layer graphene with θ = 6.4◦ (right
panel). Two Gaussian components of the two-Gaussian fit are shown
in green (broad component) and blue (narrow component). See Fig. 14
for dependence of broad and narrow components on angle θ .

photon energy) and have nearly the same intensity. Addi-
tionally, we find that the width of one Gaussian component
(narrow component) is 30 cm−1, while the width of the other
Gaussian component (broad component) is almost two times
larger, 59 cm−1.

Figure 14 shows the position, the width, and the intensity
of these two Gaussian components in the case of a rotated
double-layer graphene (broad and narrow Gaussian compo-
nents are shown with different color in Fig. 14). Data in
Fig. 14 are shown for the supercell tight-binding calculation,
but similar results are obtained with the continuum model.

Quite surprisingly, we find that the broad Gaussian com-
ponent of the Raman 2D peak in the rotated double-layer
graphene is nearly independent of the angle θ . There is an
overall decrease in the intensity of the broad component below
the critical angle (∼10◦) but the changes in the position and
the width are almost negligible.

For the narrow Gaussian component in the rotated double-
layer graphene, we again find that its width almost does
not depend on the angle θ . On the other hand, the peak
intensity and the peak position of the narrow component
show a drastic change below the critical angle (∼10◦). In
particular, exactly at the critical angle the narrow component
nearly vanishes. Below the critical angle (5◦ < θ < 10◦), the
narrow component reappears but with significantly lower peak
position (−3 cm−1 below the critical angle as compared to
18 cm−1 above the critical angle). At the even lower angle
(θ < 5◦), the narrow component nearly disappears once again.

This appearance and disappearance of the narrow compo-
nent gives an insight into the complex behavior of the overall
position, intensity, and width of the Raman 2D peak (black line
in Fig. 14). For example, the overall increase in the width of the
Raman 2D peak near the critical angle (∼10◦) can be explained
by the disappearance of the narrow Gaussian component at the
same angle. Similarly, reappearance of the narrow component
with lower frequency below the critical angle (5◦ < θ < 10◦)
explains the overall change in the peak position of the Raman
2D peak. Additionally, reappearance of the narrow component
at the lower frequency than the broad component is consistent

FIG. 14. (Color online) Fit of the calculated Raman 2D peak to
a single Gaussian (black line) and to two Gaussians (broad Gaussian
component is in green and narrow in blue). Peak position and intensity
for all three lines are given relative to the single Gaussian fit of the
2D Raman peak in the single-layer graphene. Other conventions are
as in the Fig. 9. Narrow Gaussian component for some values of
angle θ has negligible intensity, which makes the fitting procedure ill
conditioned. For that range of angles, the position and width of the
narrow component are drawn with a straight dotted line. Calculation
is performed for a single incoming photon energy 1.96 eV.

with the experimentally observed two-peak structure of the
Raman 2D peak in the same range of angles θ .

It is tempting to interpret the broad and narrow Gaussian
components of the 2D peaks as coming from the corners of the
triangular region (inner phonons, Ref. 27) in Fig. 11 and from
the triangular faces (outer phonons), respectively. Indeed, a
similar two-peak feature of the Raman 2D peak has been
found in Ref. 27, but for significantly larger incoming photon
energies (3.8 eV). These two features of the Raman 2D peak
were denoted as 2D+ (inner) and 2D− (outer) in Fig. 26 of
Ref. 27. However, the origin of the two-peak features we find
here is decidedly different. We demonstrate this by taking
our single-layer graphene calculation and considering only
small slices (in a certain region of angles around the K point)
of the triangular regions in the phonon Brillouin zone either
near the triangular corners or faces. We find in both cases that
the two-Gaussian-peak feature persists, with similar fitting
parameters.
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Instead, we find that this two-peak structure of the Raman
2D peak originates from the sum over electron-hole pair states
in Eq. (14) (not different phonon states as for the feature found
in Ref. 27). In particular, we find that the electron-hole pairs
which are separated by the energy close to the incoming light
energy give rise to the narrow component of the 2D peak from
Fig. 14, while the higher-energy electron-hole pairs give rise to
the broad component from Fig. 14. More specifically, for the
incoming photon energy of 1.96 eV, we find that the narrow
component of the 2D peak originates from the electron-hole
pairs separated up to ∼2.1 eV. Electron-hole pairs between
∼2.1 and ∼2.6 eV give rise to the broad component.

4. Influence of interlayer interaction on electron wave functions
and eigenenergies

The tight-binding model of the rotated double-layer
graphene used in our study is based on a Slater-Koster
parametrization from Ref. 3. This parametrization assigns a
hopping term to any pair of pz orbitals on two carbon atoms.
These carbon atoms can either be in the same, or two different,
graphene layers. Therefore, if we set to zero all hopping terms
between a pair of carbon atoms in the different graphene layers
(interlayer hopping), we can effectively turn off the interaction
between the two graphene layers.

The effect of allowing the electron interlayer hopping in our
calculation is twofold. First, it affects electron wave functions.
The change in the electron wave functions modifies electron-
light and electron-phonon matrix elements, which in turn
changes Raman intensity of both the G and 2D peaks, as given
for example in the numerators of Eqs. (15) and (16). Second,
interlayer hopping affects electron eigenenergies. Electron
eigenenergies in turn affect Raman G and 2D intensities
through the denominators in, for example, Eqs. (15) and (16).

Figure 15 shows which features of the Raman 2D peak can
be explained solely by the influence of the interlayer hopping
on the electron wave functions, and which by the influence on
the electron eigenenergies. The dotted red (blue) line in Fig. 15
shows the Raman 2D peak position, intensity, and width for
the calculation in which the interlayer hopping is given only for
the electron eigenenergies (electron wave functions). The solid
black lines in these graphs are the same as in Fig. 9, showing the
results of the full Raman 2D peak calculation (with interlayer
hopping considered both for electron eigenenergies and wave
functions).

From Fig. 15 we conclude that the position of the Raman
2D peak is almost completely determined by the influence of
the interlayer hopping on the electron eigenergies. On the other
hand, intensity of the Raman 2D peak is determined by the
interlayer hopping influence on the electron wave functions.
Finally, an increase in the width of the Raman 2D peak at low
angles θ is well described by the influence of the interlayer
hopping on the electron wave functions. However, influence
of the interlayer hopping on the electron wave functions does
not reproduce the feature in the Raman 2D peak width near
the critical angle (∼10◦).

D. Limit of small and limit of large angles

Here, we discuss properties of the Raman 2D and G peaks
of the rotated double-layer graphene in the limit of small (close

FIG. 15. (Color online) Calculated position, intensity, and width
of the Raman 2D peak for the incoming photon energy of 1.96 eV.
Dotted lines show results of the calculation in which the influence of
the electron hopping terms between two graphene layers affects only
electron eigenenergies (red) or only electron wave functions (blue).
See main text for more details. Other conventions are the same as in
Fig. 9.

to 0◦) and large (close to 30◦) angles θ . For the Raman G peak,
we find that in both limits (0◦ and 30◦) intensity of the G peak
is similar to that of a single-layer graphene (multiplied with
number of layers in the rotated double-layer graphene, two). In
fact, for the entire range of angles θ , except close to the critical
angle, we find that the Raman G peak intensity is similar to
that of a single-layer graphene (times two).

The situation with the Raman 2D peak is again more
complicated. Figure 16 shows calculated Raman 2D profiles
for the rotated double-layer graphene (black) shifted for clarity
in the vertical direction proportionally to the value of the
angle θ . The Raman 2D profile of the single-layer graphene
(multiplied by two) is indicated with the thicker red line in
Fig. 16. From Fig. 16 one can see that the Raman 2D spectrum
of the rotated double-layer graphene above θ ≈ 15◦ is already
converging towards that of a single-layer graphene (red).

On the other hand, in the limit of a small angle θ

(close to 0◦), the Raman 2D peak intensity of the rotated
double-layer graphene is significantly smaller than that at the
larger angles, or that of the single-layer graphene. We find
similar reduction in intensity in the case of the AB (blue in
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FIG. 16. (Color online) Calculated Raman 2D profiles [I2(ωout =
ω) from Eq. (14)] for the rotated double-layer graphene (thin black
lines), the single-layer graphene multiplied by two (thick red line),
the AB stacked double-layer graphene (blue), and the AA stacked
double-layer graphene (green). The rotated double-layer graphene
spectra are shifted in the vertical direction, proportionally to the angle
θ , for clarity. Raman 2D profile of the single-layer graphene (red) is
shifted vertically proportional to θ = 30◦.

Fig. 16) and the AA (green in Fig. 16) stacked double-layer
graphene. Additionally, the peak position and width for small
angles θ are qualitatively similar to that of the AB and AA
stacked double-layer graphene. Similarity with the AB and
AA stacked double-layer graphene is not unexpected since the
rotated double-layer graphene in the limit of very small angles
θ is composed of a hexagonal superperiodic arrangements of
AB and AA stacked regions. This pattern is already visible to
some degree on Fig. 1(b) for the case of θ = 9.43◦ and is even
more prominent at smaller angles θ .

However, in the sharp contrast to the AB and AA stacked
double-layer graphene, we find no prominent multipeak
structure in the case of the rotated double-layer graphene in
the limit of a very small angle θ . Furthermore, the double-peak
structure discussed earlier in Sec. III C3 is of a different
origin, and separation in frequency between the two Gaussian
components is much smaller.

IV. SUMMARY AND OUTLOOK

In this work, we provided a theoretical description of the
two most prominent Raman signals in rotated double-layer
graphene (G peak and 2D peak). We find a relatively simple
dependence of the Raman G peak intensity on the angle θ . On
the other hand, position, intensity, and width of the Raman 2D

peak as a function of angle θ is much more complex. All of
our findings are in good agreement with available experimental
data.13 We trace the origin of the complex dependence of the
Raman 2D peak signal on the angle θ by decomposing the
Raman 2D peak into two Gaussian components with quite
different widths that are nearly independent on the angle θ . In
fact, strong dependence of the intensity and position of one of
the components is responsible for the overall changes to the
Raman 2D peak.

Additionally, we discuss the importance of coherence in the
Raman G peak calculation. We analyze both coherence over
the various electron-hole pairs, and coherence over the various
Feynman diagrams contributing to the Raman G peak. In the
case of the Raman 2D peak, we analyze regions of the phonon
Brillouin zone contributing to the Raman signal, and explore
the influence of the interlayer interaction on the electron wave
functions and eigenenergies.

Our study provides a way to experimentally determine angle
θ of the rotated double-layer graphene using only the Raman
spectroscopy measurement. Angle determination becomes
even more robust if one repeats the Raman spectroscopy
measurement with a different incoming photon energy, as
discussed in Sec. III C1. Finally, this work provides an insight
into the coupling between the mechanical degree of freedom
(angle θ ) and the electronic degrees of freedom (singularities in
the density of states) in the rotated double-layer graphene. We
expect similar effects to occur if even more layers of graphene
are stacked on top of each other, or if different graphenelike
two-dimensional systems are stacked on top of each other.
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