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In insulators, Born effective charges describe the electrical polarization induced by the displacement of
individual atomic sublattices. Such a physical property is at first sight irrelevant for metals and doped
semiconductors, where the macroscopic polarization is ill defined. Here we show that, in clean conductors,
going beyond the adiabatic approximation results in nonadiabatic Born effective charges that are well
defined in the low-frequency limit. In addition, we find that the sublattice sum of the nonadiabatic Born
effective charges does not vanish as it does in the insulating case, but instead is proportional to the Drude
weight. We demonstrate these formal results with density functional perturbation theory calculations of
Al and electron-doped SnS2 and SrTiO3.
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Born effective charges (BECs) are defined as the polari-
zation induced by the displacement of an atomic sublattice
[1–3]. They are key quantities for the microscopic under-
standing of a wide variety of phenomena in insulators,
including the interplay between electric fields and long-
wavelength optical phonons [1,4–7], lattice contribution to
dielectric screening [1,4] and electromechanical coupling
[8–10], and polar properties of ferroelectrics [11–13]. BECs
(also known as dynamical charges) were placed on a firm
conceptual footing in the seminal work of Pick, Cohen, and
Martin (PCM) [3], which formally established the acoustic
sum rule (ASR), that a rigid translation of the crystal lattice
does not produce either forces on the individual atoms or a
net electrical polarization. This is a consequence of trans-
lational invariance and charge neutrality, and requires that
the sublattice sum of the BECs vanish.
The macroscopic polarization and its parametric deriv-

atives are only well defined in a gapped system [14], which
at first sight rules out the calculation of BECs in metals.
In addition, a hypothetical definition of the BECs as the
dipolar moment of the first-order charge induced by an
atomic displacement would also be problematic, since the
free carriers screen any long-range electrostatic perturba-
tion. Yet, the concept of BEC is routinely used to study
doped (and hence metallic) semiconductors, where the
Fröhlich divergence [6,7] in electron-phonon matrix ele-
ments plays a central role in carrier scattering; the BECs for
doped semiconductors are calculated in the undoped limit
[6,7], but the validity of such an approximation remains to
be seen. Also, the recent surge of interest in “ferroelectric
metals” [15,16] has provided additional motivation to
understand BECs in metallic systems.

As we shall see shortly, one can circumvent the issues
with defining and calculating BECs in metallic systems
by relaxing the adiabatic (or Born-Oppenheimer [17])
approximation, a key assumption in the PCM derivations.
The adiabatic approximation is usually justified in insula-
tors, where the electronic gap is much larger than typical
optical phonon frequencies (< 200 meV for inorganic
materials [18]), but generally breaks down in a metallic
or doped semiconducting system. Manifestation of non-
adiabaticity in lattice dynamics is well known, e.g.,
plasmon-phonon coupling [19,20] and renormalization of
the phonon frequencies [21]. In particular, there exists a
region near the zone center where the phase velocity of an
optical phonon is large compared to the Fermi velocity
[22–24]. In such a regime, the nonadiabatic dynamical
matrix may significantly differ from its adiabatic counter-
part. Also, free carriers are unable to screen the long-range
electric fields [25], and signatures of the BECs can be
detected experimentally as resonances in the reflectivity
spectra [26,27] or shifts in the plasmon frequency [19].
In this work, we show that nonadiabatic BECs

(NABECs) are well-defined real quantities [as long as time-
reversal (TR) symmetry is preserved] in the low-frequency
regime relevant for lattice dynamics. Remarkably, we find
that their sublattice sum in general does not vanish but
tends to the Drude weight (DW), which gives the density of
free electrons available for conduction. This generalized
sum rule implies that the NABECs never vanish in metals
or doped semiconductors (not even in elemental quasi-free-
electron crystals). This result, in addition to clarifying the
origin of the ASR breakdown that was pointed out in
Ref. [27], provides a novel physical interpretation of the
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DW in terms of lattice dynamics (as opposed to electrical
transport). Indeed, the DW emerges as the mechanical
inertia of the conduction electrons to an acceleration of the
underlying lattice potential, which cannot drag the carriers
along if subjected to a sufficiently rapid oscillation. We
demonstrate our formal results with a density-functional
perturbation theory (DFPT) [28,29] based methodology for
calculating the NABECs and DW for a prototypical metal
(Al) and two doped semiconductors (SnS2 and SrTiO3). In
the latter, we find that NABECs can deviate significantly
from their values in the undoped material.
We shall frame our discussion in terms of generalized

susceptibility functions, χλ1λ2ðω;qÞ, describing the λ1
response to the perturbation λ2, modulated by a wave
vector q and at a frequency ω. We focus henceforth on the
cases where λ1;2 are either an atomic displacement of
sublattice κ in direction α (τκα) or a component of the vector
potential (Aα). The purely electromagnetic case is well
known: χAαAβ

ðω;qÞ is the current-current response [30],
whose long-wavelength limit relates to the macroscopic
optical conductivity via [31]

σαβðωÞ ¼
i
ω
lim
q→0

χAαAβ
ðω;qÞ: ð1Þ

(As customary, we shall assume that the frequency has a
small imaginary part iη to ensure causality [32].) In close
analogy with Eq. (1), we shall define NABECs as [26,27]

ZðαÞ
κβ ðωÞ ¼ −

i
ω
lim
q→0

χAατκβðω;qÞ; ð2Þ

which has the physical meaning of a current response to the
atomic velocity [33].
For most materials, the interesting physics is contained

in the small-ω behavior of ZðαÞ
κβ ðωÞ, i.e., at the frequencies

that are relevant for lattice dynamics. Within such a regime,
the conductivity [Eq. (1)] vanishes in topologically trivial
insulators [32,34] and Eq. (2) reduces to the standard
linear-response formula [4,28,35] for the adiabatic BEC.
Note that, in the insulating case, the result is also inde-
pendent of the order of the long-wavelength and small-
frequency limits.
In metals, Eq. (1) diverges as ω → 0, resulting in the

Drude peak in the longitudinal conductivity [31]. Since
Eq. (2) is formally similar to Eq. (1), it is reasonable to

wonder whether ZðαÞ
κβ ðω → 0Þ diverges as well, or tends to a

finite constant. The divergence in σαβðω → 0Þ is rooted in
the fact that χAαAβ

tends to a finite nonzero limit in all
metals,

lim
ω→0

χAαAβ
ðωÞ ¼ Dαβ

π
; ð3Þ

where Dαβ is the DW tensor [32]. The situation regarding
the mixed response to a vector potential and an atomic
displacement clearly differs, as it requires time-reversal
symmetry to be broken in order to be nonzero. (A is odd
with respect to both TR and space inversion, while τκ is
TR even.) This simple argument guarantees that in TR-
symmetric metals, where a steady current in response to a
static atomic displacement is forbidden, χAατκβðω → 0Þ
vanishes and therefore ZðαÞ

κβ ðω → 0Þ is well defined. Note
that, unlike the insulating case, here the order of the q → 0
and ω → 0 limits does not commute; our prescription of
taking the q → 0 first is relevant for optical phonons, which
retain a finite frequency in the long-wavelength limit.
Our arguments, in principle, do not concern acoustic

phonons, since their frequency vanishes linearly with
momentum in a neighborhood of the zone center. Yet, in
the following we shall consider hypothetical long-wave-
length acoustic phonons whose limiting q → 0 frequency is
artificially assumed to remain finite. This assumption,
while physically unrealistic, will serve as an intermediate
step toward the derivation of a sum rule for the nonadiabatic
BECs, which shall be our next goal. The rationale behind
this procedure is that an acoustic phonon at q ¼ 0 reduces
to a rigid translation of the whole crystal lattice. In the
linear regime, a translation can be regarded as the sum of
the displacements of all individual atomic sublattices; thus,
by looking at the current density induced by a “zone-center
acoustic phonon” that is externally modulated in time at a
frequency ω, one can directly infer the sublattice sum of the
NABECs [Eq. (2)].
The advantage of such an approach is that the acoustic

phonon perturbation enjoys a remarkably compact expres-
sion when rewritten, via a coordinate transformation, in the
curvilinear frame that is comoving with the atoms [36–38].
Thereby, an acoustic phonon can be recast as a “static” strain
contribution that only depends on the metric of the defor-
mation, plus a “dynamical” effective vector potential that
results from the inertia of the electrons upon local displace-
ments of the coordinate frame [37]. In a Kohn-Sham [39]
density-functional context [see Supplemental Material (SM),
Sec. S1 [40] ], we can then write the sublattice sum of the
first-order phonon (τκβ) Hamiltonians as [37]

X
κ

Ĥτκβðω;qÞ ¼ ĤðβÞðω;qÞ þ iωĤAβðω;qÞ; ð4Þ

where ĤðβÞðω;qÞ is the “metric wave” Hamiltonian of
Refs. [37,38], and ĤAβðω;qÞ is the additional effective
vector-potential perturbation.
As a result of translational invariance, ĤðβÞðω;qÞ iden-

tically vanishes at the zone center [38], and thus the rigid
displacement of the lattice reduces to the vector-potential
perturbation term at q ¼ 0. By combining this observation
with Eqs. (1) and (2), we readily arrive at
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1

Ω

X
κ

ZðαÞ
κβ ðωÞ ¼ iωσαβðωÞ; ð5Þ

relating the sum of the NABECs to the optical conductivity
(Ω is the cell volume). From Eq. (3) we find that the small-
frequency limit of Eq. (5) becomes

1

Ω

X
κ

Z�
α;κβ ¼

Dαβ

π
; ð6Þ

where Z�
α;κβ ≡ ZðαÞ

κβ ðω → 0Þ is the zero-frequency limit of
the NABEC. We call Eq. (6) the NABEC sum rule for
metals and, along with Eq. (5), is the central result of this
work. Of course, in an insulator Dαβ vanishes, and we
recover the well-known version of the acoustic sum rule [3],P

κ Z
�
α;κβ ¼ 0. The physical interpretation of Eq. (6) is that

the DW quantifies the portion of the electron charge that is
“free,” i.e., not bound to the underlying atomic lattice.
When the crystal is rigidly translated, going beyond the
adiabatic assumption means that exactly this charge is “left
behind,” resulting in a positive current due to the displace-
ment of the uncompensated nuclear charges. This provides
an alternative physical interpretation of the DW, which is
based on lattice dynamics rather than electronic transport.
The above results are relevant for the clean limit of a

metal or semiconductor; i.e., we assume an optical phonon
of frequency ω that is much larger that the inverse carrier

lifetime 1=τ [21,24]. Thus, the limit ZðαÞ
κβ ðω → 0Þ in Eq. (6)

should not be taken literally: the result only holds for a
window of frequencies where ω ≫ 1=τ, and both param-
eters are far smaller than interband resonances. Whenever
the clean condition breaks down, we expect the NABECs to
vanish as the carriers have enough time to relax to the

instantaneous electronic ground state along the phonon
displacement coordinate. This is consistent with the argu-
ments of Refs. [21,23,24], made for nonadiabatic correc-
tions to the phonon frequencies. Interestingly, Eq. (5)
appears to be qualitatively correct even in the presence
of dissipation—the direct-current limit of the conductivity
is finite, which implies that the ASR is recovered for
ω → 0. Deriving the nonadiabatic current in the comoving
reference frame was key to achieving the qualitatively
correct results, as it reflects the intuitive idea that scattering
events tend to equilibrate the average momentum of the
carriers with respect to the underlying crystal lattice, rather
than the laboratory frame [49].
We will now demonstrate the sum rule in Eq. (6) with

DFPT calculations performed on three systems: the face-
centered cubic (fcc) phase of Al, electron-doped bulk
(P3̄m1) SnS2, and electron-doped cubic (Pm3̄m) SrTiO3

(STO). The details of the implementation, computational
parameters, and numerical convergence for these calcula-
tions are given in the SM, Secs. S1 D and S2 [40]. The
doping in SnS2 and STO is applied under the “rigid band”
approximation, i.e., all matrix elements and structural
parameters are taken from an undoped calculation, and
just the occupation factors are changed to reflect the added
electrons; the excess positive charge to compensate the
electrons is added to the ionic BEC of a given sublattice,
corresponding to chemical doping on that sublattice. In
SM, Sec. S2 C [40], we compare these results to explicit
doping via the virtual crystal approximation, demonstrating
that the NABEC sum rule is satisfied regardless of the
approximation.
We calculate the NABECs in the ω → 0 limit as (see SM,

Sec. S1 [40], and Refs. [26,27])

Z�
α;κβ ¼ Zion

κ δαβ − Im lim
η→0þ

Z
½d3k�

X
n≠m

fnk − fmk

ðϵnk − ϵmkÞðϵnk − ϵmk þ iηÞ hunkjĤ
Aα
k jumkihumkjĤτκβ

k junki; ð7Þ

where Zion
κ is the ionic (i.e., pseudopotential) charge, ϵnk

and fnk ¼ fðϵnkÞ are the energy and Fermi occupation
factor of band n and k point k, unk is the cell-periodic
part of the corresponding Bloch function, ĤAα

k is the k
derivative of the Hamiltonian, and Ĥ

τκβ
k is the screened

(i.e., including self-consistent fields) first-order phonon
Hamiltonian. The DW, in turn, is calculated via [32]

Ω
π
Dαβ ¼ −

Z
½d3k�

X
n

∂fðϵnkÞ
∂ϵ vðαÞnkv

ðβÞ
nk ; ð8Þ

where vðαÞnk ¼ hunkjĤAα
k junki is the α component of the

band velocity. Note that, because of a technical subtlety
related to the use of nonlocal pseudopotentials (NLPSPs) in
the calculations, the sum rule of Eq. (6) is exactly satisfied
only if the second band velocity in Eq. (8) is replaced with

the canonical momentum, ṽðβÞnk ¼ hunkjp̂βkjunki. [We shall
refer to this revised version of Eq. (8) as “modified” DW,
D̃αβ in the following.] We ascribe this outcome to the well-
known ambiguities that arise when combining NLPSPs
with electromagnetic fields [50–52]; in practice, we find
that its quantitative impact is small.
In Fig. 1 we plot the NABEC Z�, standard DW D, and

modified DW D̃, for fcc Al versus the number of k points
used to sample the Brillouin zone of the conventional cubic
cell [53]. Since fcc Al has no optical modes, the non-
adiabatic regime is hardly relevant here from a physical
point of view; yet, its computational simplicity allows for a
numerical test of our arguments. Remarkably, the NABEC
of Al does not vanish in spite of it being an elemental metal,
and converges to a value of around 2e. We see from the red
dashed curve that the sum rule in Eq. (6) is accurately
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satisfied for a large enough k mesh. We also see that D̃
differs slightly from D, and this results in a violation of the
NABEC sum rule that is modest (∼0.1e) but clearly
discerned for the numerical accuracy of our calculations.
We find a similar qualitative behavior for all materials in
this study (see, e.g., SM, Figs. S9–S11 [40]); thus, we shall
exclusively focus on D̃αβ henceforth.
We now consider bulk SnS2, a layered insulator that has

shown considerable promise for use in a wide range of
device applications [54–58]. We dope SnS2 with electrons
into the isolated, lowest-energy Sn(5s)-S(3p) conduction
band [see Fig. S2(b) in SM [40] ]. In order to accurately
describe the Fermi surface, we perform the Brillouin-zone
integrals of Eqs. (7) and (8) via Wannier interpolation to a
dense k mesh (see SM, Sec. S2 B [40]).
In Fig. 2(a), we show the NABECs versus doping for the

Sn and S sublattices, in the in-plane x and out-of-plane z
directions. The dotted curves in Fig. 2(a) correspond to the
excess ionic charge placed on the S sublattices, and the
solid curves to the charge placed on the Sn sublattice. In
Fig. 2(b) we see that the violation of the (sublattice-
summed) BEC charge neutrality condition increases as
we dope to roughly half of the conduction-band width, and
then decreases back to zero when the conduction band is
filled. The DWexhibits the same behavior, and we see from
the red curves around zero that the NABEC sum rule
[Eq. (6)] is accurately satisfied.
Finally, we calculate the NABECs and DW for the

electron-doped cubic phase of STO, which has attracted
significant attention due to its superconducting properties
[59–61]. To illustrate the behavior of the NABECs, we
present doping across the entire Ti t2g conduction band
manifold [see Fig. S2(a) [40] ], even though it is not

expected to be experimentally achievable. (Also, we should
note that significant changes to the electronic and atomic
structure are expected if such calculations at high doping
are performed with atomic relaxations [62].)
In Figs. 3(a)–3(c) we plot the NABECs for the sub-

latticies in STO with doping. The oxygens are labeled as
“equatorial” (on faces parallel to î for BEC element Z�

ii) and
“apical” (on faces perpendicular to î). Different trends in Z�
result from different choices of sublattice for chemical
doping, suggesting significant qualitative changes in
frequencies of polar-phonon modes depending on the

FIG. 1. Demonstration of nonadiabatic Born effective charge
(NABEC) sum rule for Al versus k points in the Brillouin zone of
the conventional 4-atom cell. Blue dot-dashed curve is the
NABEC, the black solid (pink dotted) curve is minus the cell
volume multiplied by the modified (normal) Drude weight, and
red dashed (green dotted) curve is the sum of the two. Inset is a
magnification around 0 e for the largest k mesh.

(a) (b)

FIG. 2. (a) Nonadiabatic Born effective charges versus doping
above the conduction-band minimum (CBM) in the in-plane x
direction and out-of-plane z direction. Solid (dashed) lines are for
the excess ionic charge associated with the Sn (S) sublattice.
(b) Demonstration of the NABEC sum rule, where the sublattice
sum of the BECs equals the Drude weight. Blue shaded region is
the DOS of the conduction band calculated from the Wannier
interpolation.

(a) (b)

(c) (d)

FIG. 3. Nonadiabatic Born effective charges of the sublattices
in SrTiO3 versus doping above the conduction-band minimum on
the (a) Sr, (b) Ti, or (c) O sublattice. Panel (d) demonstrates the
NABEC sum rule, where the sublattice sum of the BECs cancels
with the Drude weight. Blue shaded region is the density of states
of the Wannierized Ti t2g manifold.
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sublattice that is doped versus the sublattice(s) involved in
the phonon displacements. Figure 3(a) corresponds to
doping on the Sr site, e.g., by La substitution; in this case,
the Sr Z� increases significantly to compensate the decrease
of the Ti Z�, resulting from the fact that the electrons are
doped into the Ti 3d orbitals; this effect is significantly
reduced if we consider doping on the Ti site in Fig. 3(b)
(e.g., by Nb substitution). For doping on the O site in Fig. 3
(c) (e.g., by the formation of O vacancies), the decrease in
the Ti Z� is now partially compensated by the increase in Z�
for the O sublattices.
In Fig. 3(d), we see very similar behavior to Fig. 2(b);

i.e., the sublattice sum of the BECs increasingly deviates
from zero with doping toward the middle of the conduc-
tion-band manifold, and then decreases. As with SnS2, the
NABEC sum rule is accurately satisfied.
In conclusion, we have demonstrated that nonadiabatic

Born effective charges are well defined in metals with time-
reversal symmetry, and generalized the acoustic sum rule to
the full nonadiabatic regime, where the sublattice sum of
the nonadiabatic Born effective charges equals the Drude
weight. The rigorous understanding and first-principles
description of nonadiabatic Born effective charges pro-
vided by this work opens up several future directions for
study. For example, it will allow quantitative predictions of
plasmon-phonon coupling, and the implications for trans-
port in doped semiconductor devices such as transparent
conductors. Direct comparison with experimental probes
such as infrared or Raman scattering will serve to validate
the theory and aid in materials characterization. It may also
shed light on the physics of ferroelectric metals, possibly
providing additional tools to quantify the amplitude of the
polar lattice distortion.
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