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Comparison of GW band structure to semiempirical approach for an FeSe monolayer
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We present the G0W0 band structure, core levels, and deformation potential of monolayer FeSe in the
paramagnetic phase based on a starting mean field of the Kohn-Sham density functional theory (DFT) with
the Perdew, Burke, and Ernzerhof functional. We find the GW correction increases the bandwidth of the states
forming the M pocket near the Fermi energy, while leaving the � pocket roughly unchanged. We then compare
the G0W0 quasiparticle band energies with the band structure from a simple empirical +A approach, which was
recently proposed to capture the renormalization of the electron-phonon interaction going beyond DFT in FeSe,
when used as a starting point in density functional perturbation theory. We show that this empirical correction
succeeds in approximating the GW nonlocal and dynamical self-energy in monolayer FeSe and reproduces the
GW band structure near the Fermi surface, the core energy levels, and the deformation potential (electron-phonon
coupling).
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I. INTRODUCTION

The report of superconducting transition temperatures (Tc)
as high as 100 K in monolayer FeSe on SrTiO3 (STO)
has inspired a wide range of interest in understanding its
electronic properties and the origin of the high Tc [1–7].
These high Tc are notable for being much higher than that
of bulk FeSe (Tc = 8 K) [8] and other Fe-based super-
conductors, such as SmOxF1−xFeAs (Tc = 55 K) [9] and
AxFe2−ySe2 (Tc = 30 K) [10]. Angle-resolved photoemission
spectroscopy (ARPES) reveals that doped monolayer FeSe
supported on STO and other oxide subbstrates has a Fermi
surface consisting only of very small electron pockets at
the corners of the Brillouin zone (the M point) [5,11,12],
distinct from both bulk FeSe and bilayer FeSe, which both
possess an additional hole pocket around the � point [12,13].
Researchers have attempted to understand the high Tc in sup-
ported monolayer FeSe through a combination of explanations
involving charge transfer from the substrate [11,14–17] and
coupling to interfacial phonon modes [7,12,18,19].

Unfortunately, understanding the electronic structure of
FeSe is complicated by the fact that standard first-principles
approaches, like the semilocal generalized gradient approx-
imation (GGA) to the exchange within density functional
theory (DFT), give results that do not agree with experimental
measurements of electronic [20–23], structural [24], or mag-
netic properties [24,25] for Fe-based superconductors. For the
electronic properties, it is well known that DFT overestimates
the bandwidth of the M-point electron pocket in FeSe com-
pared to experiment. This overestimation of the bandwidth is
a problem common to DFT calculations on metallic systems
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and can be corrected by accounting for electron-electron
interactions in the self-energy at higher levels of theory, such
as GW [26]. GW and dynamical mean field theory (DMFT)
calculations on bulk FeSe result in band narrowing and im-
proved agreement with the experimental bandwidths and the
magnetic ground state [27–29].

Remarkably, adding a simple empirical correction to GGA
at the Perdew, Burke, and Ernzerhof (PBE) level (GGA+A)
selects a ground state of FeSe that is largely consistent with
experiment and greatly enhances the deformation potential,
resulting in a concomitant increase in the electron-phonon
coupling in DFPT calculations, in good agreement with in-
elastic tunneling data [30]. This approximation of the self-
energy by a simple local potential on the Fe sites can be
justified if the self-energy in FeSe is mostly local in real
space, as shown to be true in Refs. [29,31], and largely
frequency independent. Here we evaluate the accuracy of the
GGA+A approach by comparing the electronic structure of
monolayer FeSe obtained within GGA+A with the electronic
structure from the ab initio G0W0 approach, which employs
a nonlocal and frequency-dependent self-energy. We focus
here on the isolated FeSe monolayer in the nonmagnetic
phase, leaving consideration of the antiferromagnetic phase to
future work. We address how different treatments of the fre-
quency dependence in the GW self-energy affect the electronic
structure of monolayer FeSe and find that the GW approach
increases the effective mass of the electron pocket at the M
point by a factor of 1.5 compared to the effective mass at
the GGA-PBE level and that the GW approach leaves the
� pocket mostly unchanged, compared to GGA-PBE. Finally,
we compare our G0W0 results with GGA+A [30] and find that
the latter correction to DFT-PBE can accurately reproduce the
GW band structure both for low-lying states and states near
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the Fermi level, suggesting that the self-energy can be well
approximated by a local, static potential for the states in this
material.

The paper is organized as follows. In Sec. II we discuss
our computational methodology. In Sec. III we present the
calculated GW band structure for monolayer FeSe. In Sec. IV
we present results for DFT with an empirical local correction
on the Fe sites discussed above and compare with the GW
results. We summarize in Sec. V.

II. METHOD

The mean field starting point for our ab initio G0W0

calculation [32] is obtained from density functional theory
(DFT) [33,34], as implemented in Quantum ESPRESSO [35],
in the generalized-gradient approximation (GGA) for the
exchange-correlation energy functional as proposed by
Perdew, Burke, and Ernzerhof (PBE) [36]. The in-plane
lattice constant is fixed to the lattice constant of SrTiO3,
and the atomic positions are fully relaxed. The calculation
uses a supercell geometry, optimized norm-conserving Van-
derbilt pseudopotentials from the library of Hamann [37]
with the 3s and 3p semicore states included as valence
states of the Fe atom and a wave-function cutoff of 100 Ry.
The FeSe monolayer is doped with 0.24 electrons per unit
cell to represent the doping of FeSe on STO. The dimen-
sion of the supercell is 15 Å in the out-of-plane direction.
While the experimental magnetic ground state of FeSe is un-
der debate, all calculations here are done for the nonmagnetic
ground state of FeSe, so that all approaches can be compared
within the same electronic ground state.

Our GW calculation is performed with the BerkeleyGW
package [38]. We compare three different one-shot methods
for treating the dynamical effects in the screening in the self-
energy: (1) the static screening limit (static-COHSEX) [32],
(2) the Hybertsen-Louie generalized plasmon pole model
(HL-GPP) [32], and (3) a fully frequency-dependent dielec-
tric matrix calculated using the contour deformation ap-
proach [39,40]. The dielectric matrix is calculated for all
points on a 16×16×1 q-point grid plus additional q points
commensurate with a 64×64×1 q-grid within the Voronoi
cell around q = 0 [41]. The finer sampling in the small
q region allows us to capture accurately dielectric screen-
ing due to transitions near the Fermi surface. The dielectric
matrix includes G vectors up to a dielectric cutoff of ES =
30 Ry. Nb = 2000 bands are included in the summations
over bands, and the energies are corrected using a remainder
of the half-COHSEX form for the self-energy to accelerate
convergence with respect to the number of bands [42]. Then
the quasiparticle (QP) energies are extrapolated linearly as a
function of 1/Nb to Nb = ∞. This procedure accelerates the
convergence with respect to the number of bands and reduces
the computational time used in the calculation. The full fre-
quency calculation is performed on a grid with 15 imaginary
frequencies and a spacing of 0.4 eV between frequencies on
the real axis. For the HL-GPP calculation, the Fe 3s and 3p
states are excluded from the charge density in the evaluation of
the sum rules, since they are deep states and don’t contribute
to screening. In all calculations, the Coulomb interaction is
truncated in the out-of-plane direction to prevent nonphysical

interactions between periodic images of the FeSe layers [43].
The Fermi level is recalculated and set to zero at each stage of
the band-structure calculation.

III. G0W0 BAND STRUCTURE

We first focus on the band structure, plotted using Wannier
interpolation, of monolayer FeSe near the M point as shown
in Fig. 1 and near the � point as shown in Fig. 2.

There are several bands that cross the Fermi surface near
the M point. The inner band (labeled 1 in Fig. 1) consists
of mostly Fe dzx and dzy character (in green) and forms an
electron pocket, which we will refer to as the M pocket. The
bandwidth, EM , is defined as the energy difference between
the bottom of the M pocket and the Fermi energy EF , which is
set to 0 eV. At the DFT-GGA level, EM = 0.383 eV. Including
the self-energy at the GW level reduces the occupied band-
width EM . With a one-shot G0W0 correction, the M-pocket
width is reduced by 0.132 eV when the frequency dependence
is approximated by the HL-GPP model [32] and by 0.096 eV
when the full frequency dependence of the dielectric screen-
ing is included in the self-energy [39,40]. The second highest
band (labeled 2) is also composed of mainly Fe dzx and dzy

character (in green) and crosses the Fermi energy along the M
to X direction only, where it is degenerate with band 1.

Two lower bands at the M point, labeled 3 and 4, consist
of mainly Fe dxy and dx2−y2 character (in blue) and lie below
the bottom of the electron M pocket. We label the energy
difference between band 3 (or band 4, with which it is
degenerate at M) and the bottom of the electron M pocket,
as δM , and δM is 0.131 eV at the DFT-GGA level. The energy
difference δM increases when the GW self-energy correction
is included. However, this is quite sensitive to the treatment
of the frequency dependence of the dielectric screening in the
self-energy. With a generalized plasmon pole model, δM in-
creases to 0.223 eV at the G0W0 level. When the full frequency
dependence is used, however, we see that δM is relatively
unchanged from DFT-GGA, increasing only to 0.151 eV.
Band 3 crosses the Fermi surface along the M to � direction.
At the GW level, this crossing is moved further away from M
toward �, consistent with an elongation of the Fermi surface
along the M to � direction. The Fermi surfaces are shown in
Fig. 3.

The band structure near the � point is shown in Fig. 2. The
depth of the � pocket, which we label E� , is roughly the same
at the GGA and GW levels. The bandwidth decreases slightly
by 0.015 eV when the generalized plasmon pole [32] is used
in the GW calculation and increases slightly by 0.006 eV,
when the full frequency dependence is used [39,40]. Including
the self-energy effects at the GW level does not eliminate
the � pocket, but experimentally no � pocket is observed
in ARPES measurements. We assign this discrepancy to the
fact that our GW calculations do not include the effect of
antiferromagnetic fluctuations, which remove the � pocket
from the calculations, even at the GGA level [44].

The Fermi surfaces at the GGA and G0W0 HL-GPP levels
are shown in Fig. 3. The Fermi surface changes considerably
at the GW level, becoming larger and more elongated at the
M point and becoming larger with no band crossing at the
� point.
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FIG. 1. The band structure of the electron pocket near the M point with path taken along the X → M → � direction at different levels of
theory. Different colors indicate contributions from different atomic orbitals (amount of green is proportional to the contribution of dzx and
dzy, blue to dxy and dx2−y2 , and red to the contribution from dz2 , which is negligible). The Fermi level (EF ) is set at zero. The GW bands are
calculated at the G0W0 level with frequency dependence in the dielectric screening treated within the HL-GPP model.

ARPES experiments for monolayer FeSe on STO report
a Fermi surface that consists only of small electron pock-
ets around the M point, which has an occupied bandwidth,
EM , of 0.06–0.08 eV [2,11,12]. Direct comparison with the
experimental band structure is difficult because it is not clear
whether the ground state of monolayer FeSe is antiferromag-
netic or paramagnetic. ARPES spectra of monolayer FeSe
on STO closely resemble the DFT band structure of the
paramagnetic ground state near the M point but also resemble
the DFT band structure of the checkerboard antiferromagnetic
ground state near the � point where the band forming the
hole pocket in the nonmagnetic state is pushed completely
below the Fermi level [44–48]. There are also suggestions
that the surface termination of STO may remove the � pocket
in the nonmagnetic state [49]. However, if we move the
� pocket below the Fermi level—in order to mimic the effect
of electron transfer from STO—and recalculate the occupied
bandwidth at M, the bandwidth decreases to 0.2 eV, which is
still about twice the experimental width. Thus, like the case
of bulk FeSe [29], the GW approximation does not capture
the full renormalization of the M pocket in monolayer FeSe,
at least if one assumes that there is no influence by the

STO substrate other than being a source of electrons and
strain.

IV. COMPARISON OF GW RESULTS
WITH GGA+A RESULTS

In order to describe the electronic structure of FeSe, it
is necessary to go beyond DFT and describe accurately the
electron self-energy using methods such as GW or DMFT.
However, such methods tend to be expensive computationally.
Next, we discuss the use of a local, static empirical potential
to approximate the self-energy (GGA+A). In this approach,
we replace the exchange correlation potential VGGA(r) within
the Kohn-Sham DFT with

VGGA(r) + A
∑

i

f (|r − ri|), (1)

where f (|r − ri|) describes a repulsive potential centered
around the position of each Fe atom (ri) and A is an em-
pirical fitting parameter. Previously, Ref. [30] showed that
such an empirical correction, when fit to the experimentally
known M pocket width, greatly enhances the electron-phonon
interaction in an FeSe monolayer. While these results were

FIG. 2. Band structure of the hole pocket near the � point with path taken along the M → � → X direction at different levels of theory as
in Fig. 1. Different colors indicate contributions from different atomic orbitals (the amount of green is proportional to the contribution of dzx

and dzy, blue to dxy and dx2−y2 , and red to dz2 ). The Fermi level (EF ) is set at zero.
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FIG. 3. Fermi surface with pockets at � and M (kx = ky = 0.5) points at different levels of theory. The GW results are calculated at the
G0W0 level with frequency dependence in the dielectric screening treated within the HL-GPP model.

intriguing, it remained unclear how such a potential might
affect the electronic structure for states far from the M pocket,
where the “A” parameter is fit, and for which no experimental
data are available.

We fit the GGA+A expression in Eq. (1) to the M-pocket
width from our G0W0 calculation with frequency dependence
of the screening described with the HL-GPP model. We used
a potential of the form

f (r) = e−r2/a2
0 , (2)

where a0 is the Bohr radius and find a best fit with A =
0.25 Ry. To mimic one-shot GW, in the results we present
we do not self-consistently update the GGA wave functions
after adding +A. However, we find that self-consistency does
not change the quality of the fit as long as A is tuned. We
find that with only a single parameter fit to reproduce the
GW band structure near the M pocket, GGA+A accurately
reproduces the GW energies at � for the Fe 3d states as
well as the low-lying Se 4s and 4p states (Fig. 4). The
GGA+A band structure near EF at the M and � points is
shown in Figs. 1 and 2, respectively. The Fermi surface at
the GGA+A level is shown in Fig. 3. We find that GGA+A
qualitatively reproduces the changes to the band structure and
the Fermi surface at the GW level (though the GGA+A gives
a slightly larger Fermi surface) and agrees quantitatively with
the GW energies to within 50 meV. This suggests that this
method is surprisingly powerful, requiring only a single fitting
parameter to reproduce most features of the GW calculation
with a computationally less expensive DFT-like calculation.

The good agreement between GW and GGA + A suggests
that the real part of the GW self-energy can be approximated
by a local, static potential for this system. To better under-
stand the dynamical and nonlocal contributions to the self-
energy, we examine the one-shot GW self-energy in the static
limit (static-COHSEX approximation). In the static-COHSEX
approximation, the occupied band width at M dramatically
increases to 0.63 eV. The energy gap δM closes, and the lower
M point bands (labeled 3 and 4) cross the upper bands (labeled
1 and 2) so that the band maximum of band 3 and 4 is
0.21 eV higher than the bottom of the M pocket. The electron

pocket at � disappears, as the entire band is pushed below the
Fermi level.

In the dynamical GW calculation, the renormalization con-
stant is

Znk =
[

1 − ∂�nk(E )

∂E
|E=EQP

nk

]−1

, (3)

where (nk) are the band and wave-vector indices, respectively,
� is the GW self-energy, and EQP is the quasiparticle energy.

FIG. 4. Energy levels for occupied states at the � point in
monolayer FeSe as calculated at the DFT level, G0W0 level with the
frequency dependence in the screening captured within the HL-GPP
model, and at the +A level with a static, semilocal approximation to
the self-energy.
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FIG. 5. Colored lines are showing the band structure of the electron pocket near the M point, exactly as in Fig. 1. The grayed areas show
the evolution of the bands if the selenium height in FeSe is increased by 0.15 bohr.

Znk gives the weight of the quasiparticle peak in the spectral
function. For monolayer FeSe, Znk is between 0.77 and 0.78
for all bands within 1 eV of the Fermi level at all k points in
the Brillouin zone. Given the significant deviation of Znk from
1, the large difference between the GW and static-COHSEX
results is not surprising, but this raises the question of why
the static GGA + A potential is so successful at reproduc-
ing the GW quasiparticle band structure, when the static
limit of the GW approximation itself leads to very different
results. The GW self-energy can be written in terms of a
Coulomb-hole term, �COH, and a screened-exchange term,
�SEX. In the static-COHSEX approximation, �COH can be
written as a local potential, and the nonlocal contribution to
�SEX is generally small [32]. Thus, we might expect a tunable
local potential to be able to approximate the static-COHSEX
self-energy.

To account for the dynamical effects, one must then an-
alyze the source of the error in the static-COHSEX approx-
imation, which comes from the assumption of an adiabatic
accumulation of the Coulomb hole in the screened Coulomb
interaction [32,50,51]. Numerically, Kang and Hybertsen have
found that this error manifests in a different wave-vector
dependence between GW and static-COHSEX of �COH and
can be corrected by introducing a static scaling function in
the Coulomb-hole term in the static-COHSEX approxima-
tion [52]. For the case of FeSe, we find that the difference
between the static-COHSEX and GW self-energies manifests
primarily as a smooth wave-vector-dependent shift in the
magnitude of the self-energy. In the vicinity of the Fermi
energy, this shift is nearly uniform and thus easily captured
by a tunable local potential of the form of f (|r − ri|) used in
GGA + A.

In addition to the energy levels, we also examine the
change in the band structure as the Se height is changed.
The gray lines in Fig. 5 show how the band structure energy
near the M point changes as the Se height is increased by
0.15 bohr. The deformation potential for bands 1 and 2 (in
green) at the M point is similar in magnitude for GGA-PBE,
G0W0 with frequency dependence in the dielectric screening
at the HL-GPP level and GGA + A (it is 35 meV, 24 meV,
and 44 meV, respectively). It is, however, very different for
bands 3 and 4 (in blue). In DFT the change in the bands 3 and

4 with Se height displacement is 6 meV, while it is 43 meV
and 46 meV in GW and GGA + A, respectively.

V. SUMMARY

We present first-principles calculations of the electronic
structure of monolayer FeSe at the GW level. We find that
compared to DFT-GGA, GW increases the effective mass
at the M point, resulting in improved agreement with ex-
periment. Moreover, we show that the GW results for the
quasiparticle band structure and deformation potentials can
be reproduced to good accuracy at the DFT level with a
semiempirical correction involving only a single parameter,
suggesting that such a correction, when parameterized by
experiment or smaller-scale calculations at higher levels of
theory, can be justifiably used to approximate the self-energy
correction to the band structure at greatly reduced computa-
tional cost.
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