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What can one learn about material structure given a single first-principles calculation?

Nicholas Rajen1 and Sinisa Coh1,2

1Materials Science and Engineering, University of California Riverside, Riverside, California 92521, USA
2Mechanical Engineering, University of California Riverside, Riverside, California 92521, USA

(Received 6 June 2017; published 15 May 2018)

We extract a variable X from electron orbitals �nk and energies Enk in the parent high-symmetry structure
of a wide range of complex oxides: perovskites, rutiles, pyrochlores, and cristobalites. Even though calculation
was done only in the parent structure, with no distortions, we show that X dictates material’s true ground-state
structure. We propose using Wannier functions to extract concealed variables such as X both for material structure
prediction and for high-throughput approaches.
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I. INTRODUCTION AND MOTIVATION

There is a growing need for machines to learn about
matter from results of a large set of first-principles computer
calculations. However, a single such calculation produces
∼106–109 bits of information and it is unclear how machines
can make use of them [1,2]. Therefore, so far, machines set
aside most of these bits—such as those describing electron
orbitals �nk—and try to learn from the simplest calculated
quantities such as the total energy Etot or similar.

One such example where machines are learning from Etot

are methods used for predicting positions of atoms in a yet
unsynthesized material. These methods look for a set of atom
positions ξ that minimize the total energy Etot(ξ ) of the
material. Total energy of a periodic solid can be computed from
first principles using various approximations to the density
functional theory [3,4]. However, minimization of Etot(ξ )
still remains an unsolved problem as ξ is a vector in a very
highly dimensional space (it has ≈3N dimensions and N

is a number of atoms in the material). Nevertheless, this
problem can be addressed heuristically using machine learning
techniques such as evolutionary algorithms [5] or particle
swarm optimization [6]. Broadly speaking these methods first
use Etot calculated for a wide range of different candidate
structures ξ1,ξ2, . . . ,ξm, but the same chemical composition, to
learn about the underlying interactions in that material. Next,
given this knowledge, the machine makes an informed guess
for the next structure ξm+1 and the process repeats until an
optimal structure is found. Clearly, if one used in this process
information contained in electron orbitals �nk, and not only
Etot , one could make a more informed guess of structure ξm+1.

The need for a machine to learn in the context of materials
science is also relevant for the so-called high-throughput
approaches such as the materials project [7], the aflow [8], the
oqmd [9], aiida [10], or the nomad [11] materials databases.
While in the structure prediction problem one considers a
single chemical composition at the time, in the high-throughput
approach one wishes to learn about materials with a wide
range of chemical compositions. Since these databases contain
∼105–106 materials their total information content, if one were
to store electron orbitals, is about 1014–1015 bits.

In this paper we do not focus on what or how machines
can learn from total energy Etot. Instead, the goal of this
paper is to construct a descriptor of electron orbitals �nk
and eigenenergies that can be used for learning in structure
prediction and high-throughput approaches. As a proof of
principle, we construct here a descriptor—denoted as X—that
is strongly correlated with the preferred crystal structure of
a material, as described later. Since in our proof of principle
work X turns out to be a single number, one can establish a
correlation between X and structure just by inspection, without
using machine learning. However, for materials with lower
symmetry or in the cases of other properties of interest (i.e., not
crystal structure) similarly constructed descriptors of electron
orbitals will correspond to more than one number and one
would therefore have to use machine learning.

Crystal structures of materials can be divided somewhat
loosely into families of structures [12] based on polyhedral
units present in the structure and their connectivity. Each
structure family is derived from a simple high-symmetry
structure also called parent, aristotype, or prototype structure.
Remaining structures in the family are then derived from
the parent by either displacing or substituting atoms [13,14].
These derivative structures are also called hettotypes. When
structures are related to each other by distortion that does not
preserve polyhedral units or their connectivity, we refer to them
only as polymorphs.

This paper is structured as follows. In Sec. II we describe
our approach and in Sec. III we present and discuss our results.
A comparison of our results with atomic descriptors (Pettifor
maps) is done in Sec. III.

II. APPROACH

In what follows we present a general approach to extract a
variable X—given electron orbitals �nk and eigenenergies of
a parent structure alone—that dictates which structure is a true
ground-state structure of that material. Since such a variable
knows about material’s structure (i) it has the potential to be
used in machine learning approaches described earlier. To that
end, a useful variable should also satisfy two additional criteria:
(ii) X should be represented with as few numbers as possible,
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FIG. 1. Selection of several electron orbitals �nk in the high-symmetry cubic phase of SrTiO3 perovskite. Yellow/green: positive/negative
isosurfaces of electron orbitals. Blue: Ti-O octahedra. Red: oxygen atoms.

so that learning is as efficient as possible; and (iii) X should
be calculable automatically for a given material without any
input from the user, so that it can be used by a machine.

To satisfy the criterion (i) we should ideally extract X

in some way from the fundamental variable of the problem.
In the case of quantum-mechanical descriptions of matter,
the fundamental variable is the electron many-body wave
function �̃. We note that the many-body wave function �̃

is formally not accessible in the commonly used Kohn-Sham
[4] scheme for the density functional theory. Therefore we
instead use here the so-called Kohn-Sham orbitals �nk (and
corresponding eigenenergies Enk) as they are typically rea-
sonably good approximations [15] of the quasiparticle wave
function and energy (here n is a band index while k is a crystal
momentum). Figure 1 shows some of the Kohn-Sham orbitals
for one of the materials we studied in this work (SrTiO3 cubic
perovskite).

Orbitals �nk themselves are not a good choice of X as
they do not satisfy criterion (ii). Namely, even in the simplest
calculations (say, cubic silicon), a machine needs ∼106 bits
to describe �nk reasonably accurately. As discussed later,
we circumvent this difficulty by defining X in terms of the
Wannier functions [16], as they provide a compact and faithful
representation of �nk (see Fig. 2). Wannier functions can be
computed without user input [17] so our approach satisfies
condition (iii) as well.

To demonstrate the generality of our approach we consider
here a diversified set of four structure families: ABO3 per-
ovskites, AO2 rutiles, A2B2O7 pyrochlores, and AO2 cristo-
balites for a range of A and B anions. We chose these four
families because they display different bonding environments
containing both octahedral and tetrahedral oxygen units, as
well as different connectivity of these units (see Fig. 3). The
main result of this paper is that we find that our general ap-
proach yields an energy scale X that is very well correlated with
preferred ground-state structure. We studied 64 representative
compounds: 17 perovskites, 16 rutiles, 18 pyrochlores, and 13
cristobalites.

The variable X is constructed in five steps. First, we relax
the structure of each compound while preserving the symmetry
of the parent structure (aristotype) [18].

Second, we identify a set of electron bands of interest
given the band structure from the first step. In our case we
simply take as bands of interest a complex of bands with
a dominant oxygen p-like character, as they are the most
dispersive and thus contain the most information about the
interatomic interactions in the material. Oxygen bands are also
fully occupied and isolated in these materials, which simplifies
our Wannier function based analysis. Figure 2 shows bands of
interest in the representative case of each of the four families
we studied.

Third, we convert electron orbitals �nk of bands selected in
step two into a basis of maximally localized Wannier functions
Wn [16,19,20]. This procedure significantly simplifies our
analysis as Wannier functions are typically strongly localized
on a single atom [20,21] and are therefore more convenient
descriptors of the chemical environment of a material. Given
a set of extended periodic orbitals �nk Wannier functions Wn

are defined as

Wn(r) = 1

Nk

∑
k

Unmk�mk(r), (1)

where Nk is a total number of k points. While unitary matrices
Unmk are in principle arbitrary, in the case of maximally local-
ized Wannier functions they are chosen so that the resulting
function Wn(r) is as localized in real space as possible [20].
We stress that basis change in Eq. (1) is exact in the sense
that the vector space spanned by Wn (and its periodic images)
is the same as the space spanned by �mk. However, Wn is
a more convenient object to study than �nk since a single
function Wn contains the same information as an entire band
of Bloch functions �nk (there is one function for each k point).
Therefore any information contained in bands is also contained
in the corresponding Wannier functions. One of the Wannier
functions for one of the parent structures (perovskites) is
denoted in Fig. 2(a) as W‖. This Wannier function corresponds
to the oxygen p-like function oriented along the B-O-B line
(here B is the anion in the ABO3 perovskite that is in the center
of the oxygen octahedron). The remaining two functions (W⊥)
centered on the same oxygen atom are perpendicular to the
B-O-B line [see also Fig. 2(a)]. In the remaining three families
(rutile, pyrochlore, cristobalite) we also find that Wannier
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FIG. 2. Localized Wannier functions (right) and band structure (left) for representatives of all four classes of compounds we studied
[SrTiO3 perovskite (a), SnO2 rutile (b), Y2Sn2O7 pyrochlore (c), and SiO2 cristobalite (d)]. Yellow/green: positive/negative isosurfaces of
Wannier functions W⊥ and W‖. Dotted/dashed red line: 〈W⊥|H |W⊥〉 and 〈W‖|H |W‖〉. The difference is indicated with a black arrow (X).

function on each oxygen atom follows the same logic: there
is a singlet orbital (denoted again as W‖) and a degenerate
pair of orbitals (W⊥). These Wannier functions are shown in
Figs. 2(b)–2(d).

Fourth, we construct the representation of the Hamiltonian
operator H in the Wannier basis from the previous step,

HnmR = 〈Wn|H |WmR〉. (2)

Here WmR is defined as Wm translated by a lattice vector
R, WmR(r) = Wm(r − R). It is straightforward to show that
for structural properties we need not consider HnmR when

either n �= m or R �= 0. These terms are often referred to
as hopping integrals. Hopping integrals do not contribute to
the integrated band energy

∫
BZ Enkdk of a fully occupied

band and therefore they do not have the learning potential
for determining ground-state structure [22]. Therefore, we are
left with HnmR when both n = m and R = 0. The matrix
element Hnn0 is usually referred to as the on-site energy of
the nth Wannier function. The absolute value of on-site energy
is ill-defined for a periodic solid as one can change its value
by adding an arbitrary constant C to the Hamiltonian of the
periodic solid: H → H + C. However, changing H to H + C
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FIG. 3. Crystal structures of the four family classes we considered: perovskites (np and p), rutiles (r and m), pyrochlores (py and th), and
cristobalites (c and a). Meaning of symbols is the same as in Table I.

changes on-site energies of all Wannier functions by the same
amount. Therefore, even though absolute values are ill-defined,
the differences of on-site energies,

Hnn0 − Hmm0 (3)

are well defined.
Fifth, we use symmetry to find all distinct values of Hnn0 −

Hmm0 from the previous step. Since the symmetry of all four
parent structures is high, we find that in all four families there
remains only one distinct numerical value in which n corre-
sponds to W⊥ and m to W‖. This difference we denote as X,

X = 〈W⊥|H |W⊥〉 − 〈W‖|H |W‖〉. (4)

As an example, Fig. 2(a) shows a complex of oxygen p-like
electron bands (black) in SrTiO3 along with calculated
〈W⊥|H |W⊥〉 and 〈W‖|H |W‖〉 (dotted/dashed red line). The
black arrow indicates their difference (X). The numerical
value of X for all materials we studied is provided in Table I.

We stress here that the energy scale X cannot be inferred
from the electron band energies Enk alone. Instead, one also
needs to use wave functions �nk in the construction. In
addition, X is gauge dependent as a different choice of relative
phases of wave functions will lead to a different Wannier
function and thus different X. For example, one can show
that a simple unitary rotation that rotates W‖ and W⊥ will
produce two Wannier functions with the difference in on-site

TABLE I. Variable X calculated in a high-symmetry parent state correlates well with the preferred ground-state structure (third subcolumn).
The meanings of the crystal structure abbreviations are as follows: np, nonpolar hettotype; p, polar hettotype; r, rutile hettotype; m, manganite
hettotype; n, NbO2 hettotype; py, pyrochlore; th, thortveitite; c, cristobalite; a, anatase.

Perovskite Rutile Pyrochlore Cristobalite

ABO3 X Struc. AO2 X Struc. A2B2O7 X Struc. AO2 X Struc.
(eV) (eV) (eV) ABO4 (eV)

CaZrO3 0.47 np ReO2 − 0.27 m Mg2P2O7 − 1.47 th InSbO4 3.62 a
SrZrO3 0.57 np WO2 − 0.26 m Mg2As2O7 − 0.96 th SnO2 3.68 a
CaHfO3 0.66 np MoO2 − 0.18 m Y2Si2O7 − 0.73 th PbO2 3.80 a
PbZrO3 0.70 np TcO2 − 0.09 m In2Si2O7 − 0.60 th AlSbO4 3.95 a
BaZrO3 0.76 np NbO2 − 0.06 n Cd2V2O7 − 0.59 th GaSbO4 3.98 a
SrHfO3 0.76 np VO2 0.11 m Sc2Si2O7 − 0.54 th InPO4 4.00 c
PbHfO3 0.90 np TiO2 0.17 r In2Ge2O7 − 0.31 th InAsO4 4.15 c
CdTiO3 0.90 p CrO2 0.22 r La2Sn2O7 − 0.27 py GaPO4 4.43 c
CaTiO3 0.91 np MnO2 0.27 r Sc2Ge2O7 − 0.22 th AlPO4 4.47 c
BaHfO3 0.96 np RuO2 0.27 r Y2V2O7 − 0.18 py SiO2 4.52 c
SrTiO3 1.03 p OsO2 0.39 r Bi2Ti2O7 − 0.14 py GaAsO4 4.54 c
PbTiO3 1.20 p IrO2 0.45 r Y2Mo2O7 − 0.10 py AlAsO4 4.56 c
BaTiO3 1.25 p SnO2 0.77 r Y2Ti2O7 − 0.04 py GeO2 4.67 c
NaNbO3 1.31 p PbO2 0.82 r La2Hf2O7 − 0.04 py
KNbO3 1.45 p SiO2 1.00 r La2Pb2O7 − 0.03 py
LaAlO3 1.54 np GeO2 1.06 r Y2Sn2O7 − 0.02 py
KTaO3 1.66 p La2Zr2O7 0.01 py

Bi2Hf2O7 0.02 py
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FIG. 4. Comparison with Pettifor maps. Red squares correspond to structures p, r, c, and py while blue crosses correspond to np, m, a, and
th. Conventions for structures are the same as in Table I.

energy having any value between +X and −X, including
zero. However, this procedure will increase the spread of the
Wannier functions and will reduce their symmetry. Therefore,
in this work we constructed Wannier functions for each family
structure in a consistent way that respects the symmetry of the
parent phase.

III. RESULTS

Table I contains calculated values of X for the 64 com-
pounds we studied. As can be seen from the table, X is well
correlated with the preferred ground-state structure. We discuss
now all four structure families in more detail.

Perovskites are one of the most studied complex oxides. The
numerical values of X reported in Table I for perovskites was
calculated in the parent cubic phase with space group Pm3̄m.
As can be seen from the table, X is positive for all perovskites
and it ranges from 0.47 to 1.66 eV. There is a large number
of structures (hettotypes) that derive from the cubic perovskite
parent structure. Some of these structures are polar (denoted
as p in Table I and Fig. 3) while others are nonpolar and have

rotated oxygen octahedra (np) [23–26]. Our analysis shows
that perovskites with X less than ∼1 eV tend to condense into
a nonpolar state (np) while those with X larger than ∼1 eV
condense into a polar state (p). The exception is CdTiO3 which
is polar but has X = 0.90 eV and LaAlO3 which is nonpolar
but has X = 1.54 eV. While the value of X for CdTiO3 is near
the polar–nonpolar boundary, LaAlO3 is not. The anomalous
value of X for LaAlO3 likely occurs because its perovskite
phase is degenerate with another structure [27].

We note here that the importance of local inter-
actions in perovskites has been discussed earlier in
Refs. [25,28–31]. However, we are unaware of any other
work in which ground-state density functional calculation of
a high-symmetry perovskite alone can be used to infer its
low-symmetry ground-state structure.

Rutiles are another common structure of complex oxides
[32]. Unlike perovskites, rutiles have a somewhat more com-
plicated structure as their octahedral units are both corner and
edge shared. The numerical values of X reported in Table I
for rutiles was calculated in the parent rutile structure (r)
with tetragonal space group P 42/mnm. As can be seen from
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the table, compounds with X larger than 0.17 eV remain
in the rutile phase, while those with smaller X distort into
a manganite (m) or NbO2-type (n) structure [32]. Both of
these structures contain off-centered A anions and deformed
oxygen octahedra. The more common, manganite structure, is
monoclinic with space group P 21/c while the structure unique
to NbO2 is tetragonal I41/a. In rutiles the calculated value of
X ranges between −0.27 and 1.06 eV.

Pyrochlores have the most complex structure among the
materials we studied. Variable X was computed in the cubic
pyrochlore (py) state with space group Fd3̄m. We find that
compounds with X above −0.2 eV remain in the pyrochlore
state at their ground state while others form into thortveitite
(th) [33] polymorph [34] with monoclinic space group C2/m.
The only outlier we found is La2Sn2O7 as it has X = −0.27 eV
but, as far as we are aware, it remains in a pyrochlore structure
at a ground state.

Cristobalite is a well-known structure in which anions are
surrounded with oxygen tetrahedra, unlike the other three
families in which oxygen atoms form octahedral units. The
numerical values of X reported in Table I for cristobalites were
calculated in the parent cubic idealized cristobalite structure
(space group F 4̄3m). We again find a strong correlation be-
tween X and the preferred ground-state structure. Compounds
with X larger than ∼4 eV remain cristobalite (with small
deviations known as α or β cristobalite, space groups P 41212
and I 4̄2d). Those with X less than ∼4 eV are unstable in
the cristobalite structure and distort instead into anatase phase
(a) with tetragonal space group I41/amd [34]. In the cristo-
balites we studied the calculated values of X range from 3.62
to 4.67 eV.

Comparison with Pettifor maps

While descriptor X in this work was extracted from a
first-principles calculation of a periodic solid, there are several

descriptors in use that can be extracted just based on the
chemical composition of the solid. One such example is
Pettifor maps [35] which assign a phenomenological chemical
scale χ to each chemical element [36] in the periodic table.
Figure 4 shows such maps for all of the materials studied in this
work. Horizontal and vertical axes in these plots correspond to
the ordering of χ for metal atoms appearing in each compound
(this ordering is also called Mendeleev number m).

As can be seen from the Fig. 4, Pettifor maps for these
materials correlate well with the ground-state structure only
in the case of cristobalites. Namely, compounds with smaller
m (χ ) tend to deform into anatase phase (blue cross symbols)
while those with larger m tend to remain in the cristobalite
phase (red square symbols). In the other three classes of
materials correlations with Pettifor maps are not as good. For
example, for rutiles we find that those with very large m tend
to remain in a rutile phase, but those with lower m can be either
rutile or manganite. In fact, the one with the lowest m (TiO2) is
in the rutile phase. Similarly, no obvious correlation is found
for perovskites and pyrochlores.

IV. CONCLUSION

Our work shows that it is possible to extract information
from a first-principles calculation on a parent phase and
correlate it with the preference for a ground-state structure.
While few of these correlations can be found using empirical
parameters such as Pettifor maps, or ionic radii, our work
shows that one can also extract relevant parameters from the
fundamental variable in the problem (�nk).

We expect that one could use this approach not only to char-
acterize Hamiltonian operator H but also any other quantum-
mechanical operator, such as electron-light interaction [37],
electron-phonon interaction [38], or other interactions.
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