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The unusual electronic properties of the quantum spin Hall or Chern insulator become manifest in the form of
robust edge states when samples with boundaries are studied. In this work, we ask if and how the topologically
nontrivial electronic structure of these two-dimensional systems can be passed on to their zero-dimensional
relatives, namely, fullerenes or other closed-cage molecules. To address this question, we study Haldane’s
honeycomb lattice model on polyhedral nanosurfaces. We find that for sufficiently large surfaces, characteristic
corner states appear for parameters for which the planar model displays a quantized Hall effect. In the electronic
structure, these corner states show up as in-gap modes which are well separated from the quasicontinuum of
states. We discuss the role of finite-size effects and how the coupling between the corner states lifts the degeneracy
in a characteristic way determined by the combined Berry phases which leads to an effective magnetic monopole
of charge 2 at the center of the nanosurface. Experimental implications for fullerenes in the large spin-orbit
regime are also pointed out.
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I. INTRODUCTION

The nontrivial topological electronic properties of two-
dimensional Chern insulators1,2 (quantum anomalous Hall
insulators) or quantum spin Hall insulators3–7 imply the ex-
istence of topologically protected boundary modes in systems
with boundaries. While the chiral edge states of the Chern
insulator are immune to backscattering and hence robust
against all forms of weak disorder,8 the helical edge states
of a quantum spin Hall insulator are at least protected against
elastic scattering off nonmagnetic impurities until the edge
electron-electron interactions are rather strong.9,10 In both
cases, unless disorder is so strong as to drive a phase transition,
edge states are present independent of the shape or microscopic
structure of the boundary. Because these boundary modes live
in the bulk gap of the single-particle spectrum, they appear
as in-gap levels in the total density of states [see Fig. 1(a)].
This provides a way to distinguish a topological from a trivial
insulator for which edge states are generically absent, and the
spectrum remains gapped in the presence of a boundary. On
the other hand, if we use periodic instead of open boundary
conditions [i.e., consider the system on a torus, Fig. 1(b)],
edge states are gapped out. In this case, the spectrum of a
topological insulator is indistinguishable from the spectrum
of a trivial insulator. One might expect that this conclusion
remains valid if the system is put on any closed (meaning,
without boundary) surface.

In this paper, by studying Haldane’s honeycomb lattice
model1 on topologically spherical nanosurfaces (i.e., poly-
hedra), we provide counterexamples to this naive expec-
tation. Namely, we demonstrate that on such closed but
sufficiently large surfaces, the nontrivial topological invariant
of the two-dimensional model is revealed in the electronic
spectrum: choosing parameters for which the planar system
has a nonvanishing Chern number C = ±1, we identify
characteristic in-gap states which are well separated from the
quasicontinuum of the remaining levels. Moreover, we find
that these in-gap levels correspond to eigenstates which are

localized at the corners of the polyhedral surfaces. In analogy
with the closed-cage molecules formed from carbon atoms,11

we dub the systems displaying the characteristic corner states
as topological fullerenes. A summary of our main results is
illustrated in Fig. 1. To avoid confusion, we stress that our
nomenclature does not refer to a topological invariant of a
zero-dimensional free-fermion system.12,13 [An example of
such a zero-dimensional invariant was given by Kitaev:12 in
the absence of time-reversal symmetry (class A), the number
of occupied states below the Fermi energy determines a Z
index.] Instead, we ask the question of what happens to
a two-dimensional topologically nontrivial system if it is
put on a closed two-dimensional nanosurface. Hence, the
name “topological fullerenes” solely refers to the topolog-
ically nontrivial properties of the two-dimensional parent
system.

In passing, we note that closed (spherical) surfaces with
quantized Hall conductivity similar to the ones studied in this
paper also appear when the orbital magnetoelectric effect is
analyzed via the theory of electrical polarization:14 for a three-
dimensional (3D) solid, the orbital-electronic contribution to
the magnetoelectric coupling has a quantum of indeterminacy.
This quantum corresponds to the possibility of absorbing
layers with quantized Hall conductivity on the surfaces of
the solid.

Our theoretical analysis focuses on the tetrahedral, octahe-
dral, and icosahedral nanosurfaces. These polyhedral surfaces
can be constructed from the planar honeycomb lattice by
cutting out appropriate wedges and gluing the edges back
together.15 While spherical carbon fullerenes,11,16 such as the
C60 buckyball, have the shape of an icosaherdon, materials like
boron nitride17 or transition-metal dichalcogenides18,19 prefer
to form octahedral fullerenes. We are not aware of a material
which realizes a tetrahedral nanosurface, but from a theoretical
perspective it is instructive (and simple enough) to include this
surface in our discussion as well.

To date, we do not know of an experimental system realizing
Haldane’s honeycomb lattice model. However, there are
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FIG. 1. (Color online) Schematics of the electronic spectrum of the Haldane model in the Chern-insulator phase on various geometries.
(a) For a finite open system, edge states appear in the gap. The number of in-gap states is proportional to the circumference L of the sample
while the number of states in the valence or conduction bands is proportional to L2. (b) If periodic boundary conditions are employed to form
a torus, the spectrum is gapped as for the infinite planar model. If the Haldane model is studied on polyhedral surfaces (c), (d), and (e), a finite
number of in-gap states is observed. The number of in-gap states depends on the geometry of the nanosurface, namely, the number of corners.
Moreover, the degeneracy of the in-gap levels is lifted in a characteristic way as indicated. In the bottom panels, occupied states are colored
orange, while empty states are in blue.

interesting proposals that a time-reversal-invariant quantum
spin Hall insulator with nontrivial Z2 index can be realized on
the honeycomb lattice.3,4 The first route to stabilizing such a
phase considers the possibility of inducing a large spin-orbit
coupling in graphene via heavy adatoms.20,21 The second
approach seeks for alternative graphenelike materials with
large intrinsic spin-orbit coupling, such as a single Bi bilayer,22

silicene (2D Si),23 or 2D tin.24 There are first experimental
indications for the existence of a topological insulator phase
in Bi bilayers25 and it is reasonable to assume that if the two-
dimensional (2D) versions exist, also closed-cage molecules
might be synthesized, eventually.

The remainder of the paper is organized as follows: In
Sec. II, we relate the corners of the polyhedral surfaces to
topological lattice defects called disclinations and we specify
how to define Haldane’s model on the considered nanosur-
faces. In Sec. III, we briefly review the properties of an isolated
disclination in the Haldane model and provide a topological
perspective on the existence of nontrivial bound states. In
Sec. IV, we present results from numerically diagonalizing
various polyhedral systems to demonstrate the existence of
the corner states. We also discuss the finite-size effects which
should be small in order to identify the in-gap states. In Sec. V,
we investigate how the degeneracy of the in-gap levels is
lifted due to the coupling between the corner states in a finite
system. To recover the observed splitting, we include Berry
phase terms which can be represented as an effective magnetic
monopole of charge 2 at the center of the polyhedral surfaces.
We conclude in Sec. VI by summarizing our results and
providing a more detailed discussion of possible experimental
systems.

II. MODEL FOR TOPOLOGICAL FULLERENES

A. Polyhedral nanosurfaces

To study topological effects on closed-cage molecules,
we first generalize Haldane’s Chern-insulator model on the
honeycomb lattice to polyhedral nanosurfaces. It is well known
that a polyhedral nanosurface can not be formed using only
hexagons.11 Instead, n-gons with n < 6 have to be introduced,
and in the following we briefly discuss the general structure of
such molecules. The fundamental relation satisfied by all the
closed nanosurfaces is given by Euler’s famous formula

V − E + F = χ. (1)

Equation (1) relates the number of faces F , the number
of vertices V , and the number of edges E to the Euler
characteristic χ . For a spherical polyhedral surface, χ = 2
while for the torus χ = 0. For a given n < 6, one can now
easily compute the number N of n-gons which are required
in addition to the number H of hexagons to form a closed
surface, by noting that

F = N + H, 2E = nN + 6H, 3V = nN + 6H.

In combination with Eq. (1), N can be obtained as

N = χ

1 − n/6
= 6χ

f
, (2)

where f = 6 − n. [Note that H is undetermined by Eq. (1).]
For the torus (χ = 0), it follows that N = 0 and no defects are
necessary.26 On the other hand, for the polyhedral surfaces
(χ = 2), N is nonvanishing. Specifically, an icosahedral
surface can be formed with additional 12 pentagons (f = 1),
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an octahedral surface with additional 6 squares (f = 2), or
a tetrahedral surface with additional 4 triangles (f = 3).
In essence, the total curvature needed to form a spherelike
molecule with χ = 2 is concentrated at the n-gons with n < 6.
Hence, the n-gonal lattice defects form the corners of the
polyhedra and, as discussed in the following, are crucial for
understanding the electronic structure of the Haldane model
defined on these nanosurfaces.

B. Tight-binding model

We are now in a position to define the Haldane model on the
polyhedral surfaces discussed above. The tight-binding model
is given by1

H = −t
∑
〈i,j〉

(c†i cj + H.c.)

− t2
∑
〈〈i,j〉〉

(e−iφij c
†
i cj + H.c.) + H�. (3)

Here, c
†
i and ci are fermionic creation and annihilation

operators of spinless electrons on site i, respectively. The
nearest-neighbor hopping amplitude is t = 1 which sets the
unit of energy and t2 is the second-neighbor hopping with
phase factors eiφij . In the planar model, the phases φij

are chosen such that a staggered flux configuration, which
preserves both the original unit cell and the sixfold rotation
symmetry, is realized.1 For the studied nanosurfaces, we use
the bulk assignment of φij for all the hexagons. Indeed, it is
possible to choose the handedness of φij consistently on all the
faces and across the edges where they meet. Using the concept
of a local Chern vector as introduced recently in Ref. 27, this
choice guarantees a local Chern vector which always points
either outward or inward of the surface. For the most part, we
will set φij = ±π/2 such that the second-neighbor hopping is
purely imaginary. Across the n-gons with n = 3, 4, or 5, the
phase factors are not uniquely defined and we therefore choose
t2 = 0. However, the results to be derived do not depend in an
important way on the choice of the second-neighbor hopping
across the n-gons, as they can be obtained from general
analytical arguments that are independent of this choice.

The last term H� in Eq. (3) is identical to zero for the
tetrahedral and icosahedral nanosurfaces H� = 0. For the
octahedral surfaces, on the other hand, it is defined as

H� = �

(∑
i∈A

ni −
∑
i∈B

ni

)
, (4)

where ni = c
†
i ci and A and B refer to the two sublattices. The

staggered sublattice potential H� can stabilize a topologically
trivial phase in the planar system.1 The definition (4) requires
a global assignment of two sublattices A and B. We therefore
include the staggered sublattice potential only on the octahe-
dral surfaces. Both tetrahedral and icosahedral surfaces do not
allow for a global definition of two sublattices, and attempting
to define Eq. (4) would require us to introduce domain walls
across which the definition of the A-B sublattices changes.

0

(a) (b) (c)

f = 3
f = 2
f = 1

f = 1π/3

FIG. 2. (Color online) (a) An isolated wedge disclination is
constructed by cutting out f times a π/3 wedge and gluing the two
sides back together. (b) For f = 1, the disclination core is formed by
a pentagon. (c) In the Haldane model, different types of disclinations
induce in-gap states with different energies.

III. ISOLATED DISCLINATION

A. Overview of results

The n-gonal lattice defects appearing at the corners of the
polyhedral surfaces are known as wedge disclinations28 and
are characterized by the Frank index f = 6 − n. Disclinations
are topological defects of the rotational order and have been
subject to intense studies in the context of graphene and
fullerenes.15,29–31 In the cut-and-glue construction, the integer
f > 0 (f < 0) has the meaning of counting the number of
removed (added) π/3 wedges [see Figs. 2(a) and 2(b)]. Note
that for f > 0, an isolated disclination forms the tip of a
nanocone.32

The properties of an isolated disclination in the topological
phase of the Haldane model have recently been studied
theoretically.33 The main observation was that an isolated
defect in the Chern-insulator phase with Chern number C acts
as a source of a fictitious flux

φf = sign(C)
f

4
φ0 mod φ0, (5)

which pierces the defect core, where φ0 = h/e is the quantum
of flux. The quantized Hall conductivity σxy = Ce2/h implies
that an isolated defect binds a fractional charge given by

qf = σxyφf = e|C|f
4

mod e. (6)

The defect states show up as single in-gap levels in the local
density of states with an energy which increases for increasing
f > 0 [see Fig. 2(c)]. It has been argued33 that measuring
such defect states would provide an alternative probe of the
topological phase, in analogy with dislocation modes in weak
or crystalline topological insulators.34–37

Finally, let us clarify in which sense we use the expression
“fractional charges.” We first recap that the subject of this
paper is a noninteracting model on interesting but static
lattice geometries. Therefore, unlike quasiparticle excitations
of fractional quantum Hall liquids, the fractional charges in our
system are not emergent dynamical excitations. Rather, they
are bound to topological defects in a classical field (describing
the lattice), which couples to the fermion system. In this
respect, the fractional charges we observe at disclinations
are more closely related to Majorana modes in vortices
of topological superconductors38 or the quantum number
fractionalization at domain walls in polyacetylene.39 Similar
to the aforementioned examples, we find that the quantum
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mechanical wave function associated with the fractional charge
is exponentially localized at the defect for an infinite system,
justifying the used terminology. We mention also that in-gap
states localized at point defects on the hexagonal lattice have
previously been studied in other contexts.40–42 Furthermore,
disclinations also attracted attention in two-dimensional crys-
talline topological superconductors where Majorana bound
states can be realized.43,44

B. Implications from particle-hole symmetry

In the presence of discrete symmetries,12,45 a topological
classification of topological defects exists.46 Here, we focus
on the role of particle-hole symmetry (class D) which gives
rise to a Z2 classification of point defects in two dimensions.
The Z2 index signals the presence or absence of a single
E = 0 bound state. In the case of a superconductor, the E = 0
mode corresponds to a Majorana bound state, while in a
spin-polarized insulator, the nontrivial defect binds a fractional
charge e/2. As long as the particle-hole symmetry is preserved,
a trivial defect can not be deformed into a nontrivial defect
without closing of the bulk gap. As we discuss in the following,
the bound states of disclinations in the Haldane model can be
understood from this perspective.

We first discuss the condition for particle-hole symmetry in
the Haldane model which implies a specific form of the (first
quantized) Hamiltonian matrix ĥ. We write ĥ in a sublattice
basis as

ĥ =
(

ĥAA ĥAB

ĥ
†
AB ĥBB

)
(7)

and denote the eigenfunction of ĥ with energy E as ψ(j ):∑
j

ĥijψ(j ) = Eψ(i). (8)

A particle-hole-symmetric spectrum is guaranteed if the
particle-hole conjugate wave function ϕ(i) = σzψ(i)∗ is an
eigenstate of ĥ with energy −E:∑

j

ĥij ϕ(j ) = −Eϕ(i). (9)

Here, σz is the third Pauli matrix acting on the sublattice degree
of freedom (A-B). Equation (9) implies that

σzĥ
∗σz = −ĥ (10)

or, using Eq. (7),

ĥ∗
AB = ĥAB, ĥ∗

AA = −ĥAA, ĥ∗
BB = −ĥBB. (11)

In other words, a particle-hole-symmetric spectrum is guar-
anteed if the hopping between A and B sublattices is real
but purely imaginary among either A or B sites.47 Notice
that the particle-hole symmetry in the Haldane model relies
on the bipartiteness of the honeycomb lattice. Therefore,
despite the formal analogy, it is physically very distinct from
the built-in particle-hole symmetry of a superconductor in
the Bogoliubov–de Gennes description. In particular, lattice
defects in the Haldane model have the potential to violate the
symmetry. In the following, we discuss how this fact can be
used to deduce certain properties of an isolated disclination.
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FIG. 3. (Color online) (a) The f = 1 disclination violates the
particle-hole symmetry of the Haldane model with purely imaginary
second-neighbor hopping because two A sites meet across the seam.
(b) Particle-hole symmetry can be restored by piercing the defect core
with an external flux φe = ±φf /4.

For a disclination with odd f , the particle-hole symmetry is
violated. This is easy to understand because two A sites (or two
B sites) meet across the seam, as illustrated in Fig. 3(a) for the
case f = 1. Hence, the conditions (11) are violated. However,
one can restore the particle-hole symmetry by piercing the
center of the defect with an external flux φe = ±φ0/4: if we
bring the Dirac string into line with the seam, as shown in
Fig. 3(b), then all the bonds crossing the Dirac string acquire an
additional phase factor ±i. In particular, the nearest-neighbor
hopping between two A sites across the seam becomes purely
imaginary. Similarly, the second-neighbor hopping between
A and B sites across the seam becomes real. Thus, with an
external flux φe = ±φ0/4, the conditions (11) are fulfilled
and the spectrum is particle-hole symmetric again. As a
consequence, we know that the charge bound to the defect
is either 0 or e/2 mod e:

q = qf ± eC

4
= 0 or e/2 mod e, (12)

where qf is the intrinsic defect charge and ±eC/4 is the
charge induced by the external flux. If in addition C is odd, we
immediately conclude that qf = ±e/4. Hence, there is always
a nontrivial bound state. Using the linearity in f , we find that
the bound charge for a general f is qf = ±f e/4 mod e. Thus,
for odd C, there is a Z4 classification of disclination defects.
For even C, Eq. (12) does not provide additional information.

From the discussion above, it is clear that the disclination
bound states are independent of a specific model as long as
the particle-hole symmetry is realized via the conditions (11).
It then follows that for even f the particle-hole symmetry is
preserved and the bound state (if present) is protected against
any local perturbation which preserves the conditions (11).
Similarly, if f is odd, the bound state (if present) is protected
against local perturbations which respect Eq. (11) in the
presence of an external flux φe = ±φ0/4. Hence, particle-hole
symmetry allows for a sharp topological distinction of the
defect states.

One may object that particle-hole symmetry in electronic
systems is a fine-tuned symmetry. In the Haldane model, it
is, for example, easily broken if the phases φij of the second-
neighbor hopping are tuned away from ±π/2. Fortunately,
direct diagonalization of the tight-binding problem in the
presence of particle-hole symmetry-breaking terms indicates
that Eqs. (5) and (6) still hold.33 This suggests that the
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results are valid beyond the particle-hole-symmetric limit.
Note, however, that in order to consistently define an electronic
model with an invisible seam in the presence of a disclination,
it has to respect (at least on average) the C3 symmetry for
even-f and the C6 symmetry for odd-f disclinations. The
bound states are therefore only protected in the presence of
these crystalline symmetries and it is an interesting open
problem to show if the presence or absence of bound states
can be related to appropriate rotation eigenvalues.43,48,49 In the
Appendix, we provide such a connection on the basis of the
continuum description.

IV. NUMERICAL RESULTS

A. General considerations

We now return to the study of the spherical nanosurfaces
and in the following, we present the results obtained from
numerically diagonalizing Eq. (3) on various geometries.
Because of the finite size of the molecules, there are two
important differences to the case of an isolated disclination
discussed in Sec. III. First, apart from the energy scale of
the bulk gap Eg ∼ |t2|, the finite-size effect introduces an
additional scale given by the mean-level spacing ER ∼ t/Ns

where Ns denotes the number of sites. We expect that only in
the regime Eg � ER it is possible to spot putative in-gap states
which are well separated from states of the quasicontinuum.
Second, there is always an even number of corner states and
they generically couple to each other, allowing in principle to
push the in-gap states into the quasicontinuum. In the regime
Eg � ER , the coupling is expected to be weak and in-gap
states are well defined.

Section IV B demonstrates that one can indeed identify
in-gap states for sufficiently large systems, consistent with the
analysis of isolated defects. By increasing the staggered sub-
lattice potential in the octahedral system, we also demonstrate
that the in-gap states are lost if the planar parent system is
tuned into the trivial insulator with C = 0. In Sec. IV C, we
discuss the finite-size effects. We therefore consider how the
limit Eg � ER is approached by tuning either the bulk gap
via |t2| or the mean-level spacing via the system size Ns .

B. Corner states

Figure 4 shows the spectrum for the tetrahedron, the
octahedron, and the icosahedron models with parameters
|t2| = 0.2, φ = π/2, and � = 0. For these parameters, the bulk
system realizes a Chern insulator with Chern number C = ±1.
The nanosurfaces considered in Fig. 4 have Ns = 100, 200, and
500 atoms for the tetrahedron, octahedron, and icosahedron,
respectively. This choice guarantees that the distance between
the corners is roughly the same for the different geometries.
For all the systems, the condition ER � Eg is fulfilled. Indeed,
one can identify a quasicontinuum of states separated by a gap.
In addition, each spectrum features a characteristic number
of in-gap states (some of which are degenerate, as shown in
the inset): 1 + 3 = 4 for the tetrahedron, 3 + 3 = 6 for the
octahedron, and 3 + 5 + 4 = 12 for the icosahedron. While
the observed splitting of the in-gap level is always the same
and will be discussed later in Sec. V, the order of the levels
depends on details such as system size or the ratio t2/t .

FIG. 4. (Color online) Energy levels of tetrahedron, octahedron,
and icosahedron models. Corner states are clearly visible in the gap
and are separated from the remaining states. The inset shows a zoom-
in (by a factor 100) of the in-gap states displaying the characteristic
degeneracies 1 + 3 for tetrahedron, 3 + 3 for the octahedron, and
3 + 5 + 4 for the icosahedron. In-gap levels which are occupied at
half filling are marked with a dot. Parameters of the model (3) are
t = 1.0, |t2| = 0.2, and φ = π/2.

For the given parameters, the spectrum of the octahedron
model is particle-hole symmetric as expected from the discus-
sion in Sec. III B. On the other hand, particle-hole symmetry
is violated for the tetrahedron and icosaheron models. The
fractional charge bound to an isolated disclination can also
be understood from the spectra in Fig. 4 when considering
the half-filled systems for which the average charge per site
is e/2. For the tetrahedron, one out of four in-gap states is
filled. By symmetry, the wave function of this in-gap state
has equal weight on each of the four corners. Therefore, it
contributes an average charge e/4 per corner. In the half-filled
system, this charge has to compensate the fractional charge of
the corner and we conclude that each defect carries a charge
−e/4. Similarly, for the octahedron, three out of six states
are filled, resulting in a charge −e/2 per defect. Finally, for
the icosahedron, 9 out of 12 levels are occupied resulting in
−3e/4 per defect. These values are in agreement with Eq. (6)
obtained from the analysis of an isolated disclination.

The presence of nontrivial corner states is tied to the
existence of a nontrivial Chern number in the corresponding
bulk system. This can easily be tested by adding a staggered
sublattice potential Eq. (4) which in bulk drives a transition to
a gapped phase with C = 0. The corresponding result for an
octahedral nanosurface is shown in Fig. 5. As a function of
the sublattice potential �, the spectrum changes considerably.
However, as opposed to the bulk system, finite-size effects
prohibit a sharp closing of a gap between the small- and large-
� limits. Instead, a crossover at � ≈ 1 is seen. Nevertheless,
the small- and large-� regimes are clearly distinct by the
presence or absence of the corner states. Note that a similar
analysis for tetrahedral or icosahedral surfaces is not possible
because in an attempt to define a staggered sublattice potential
for these systems, the definition of A and B sites needs
to be interchanged when crossing domain walls connecting
two defects. These domain walls can act as one-dimensional
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FIG. 5. (Color online) The staggered sublattice potential � on
the octahedral nanosurface tunes a crossover between the topological
(small-�) and trivial (large-�) regimes. Parameters of the model
(3) with Ns = 392 sites are t = 1.0, |t2| = 0.2, and φ = π/2.
Nondegenerate levels are colored black, twofold-degenerate states
red, threefold-degenerate states green, and fourfold-degenerate states
blue.

channels introducing additional in-gap states in the large-�
regime.50,51

C. Finite-size effects

The notion of in-gap states requires that ER � Eg . If this
condition is not fulfilled, the corner states are no longer clearly
separated from the rest of the spectrum and a distinction
between topological and trivial regimes (as demonstrated in
Fig. 5) is in general not possible. Despite this expectation, we
find that the finite-size effects on the octahedral nanosurfaces
have little consequences on the corner states making them well
defined even if ER ∼ Eg . On the other hand, the corner states
of the tetrahedral and icosahedral surfaces are more sensitive
and indeed require ER � Eg .

1. Octahedral nanosurfaces

We start with the octahedral nanosurface. The spectrum as
function of |t2| for Ns = 200 is shown in Fig. 6. Note that
for the bulk system, t2 = 0 corresponds to the gapless case
while a gap opens for nonzero |t2|. On the other hand, the
spectrum of the octahedral nanosurface is discrete for any t2.
Interestingly, the clearly separated corner states emerge out
of a pair of triplets near E = 0 for small t2 which already
exists for t2 = 0. In this limit, these states are expected to be
algebraically localized at the corners29,30 while for increasing
|t2| the localization length decreases, making the corner states
increasingly better defined.

A similar trend is also observed for increasing system sizes
at fixed |t2| = 0.2 (see Fig. 7). The spectrum was obtained
for Ns = 32, 72, 128, and 200 sites. For the larger systems
with Ns � 72, corner states which are well separated from the
quasicontinuum are clearly visible. However, the characteristic
pair of triplets already exists for the smallest considered system
with Ns = 36 sites.

FIG. 6. (Color online) Eigenvalues of the octahedron model as
a function of the second-neighbor hopping parameter amplitude |t2|.
Two threefold-degenerate corner states occur in the gap and are clearly
separated from other states when |t2| is about 0.05–0.1. Phase of the
second-neighbor hopping parameter is φ = π/2, the first-neighbor
hopping parameter equals 1.0, and Ns = 200. Nondegenerate levels
are colored black, twofold-degenerate states red, threefold-degenerate
states green, and fourfold-degenerate states blue.

2. Icosahedral nanosurfaces

We now turn to the icosahedral nanosurface. Figure 8 shows
the spectrum as function of the second-neighbor hopping
amplitude |t2| for Ns = 320. For small |t2|, the characteristic
level structure is not yet formed. Only when |t2| is around
0.15–0.2, in-gap states, which are clearly separated from the
quasicontinuum, emerge close to the valence band edge. A
similar finite-size effect is also observed in the spectrum for
fixed |t2| = 0.2 but variable system size Ns (see Fig. 9). For the
smallest size with Ns = 80, the in-gap levels are not yet well
separated from the rest of the states. However, they emerge for
larger systems.

FIG. 7. Energy levels for octahedron as a function of system size
(32 sites to 200 sites). Occupied levels are indicated with a black dot,
assuming that exactly half of all states (bulk and corner) are occupied.
Parameters of the model are t1 = 1.0, |t2| = 0.2, and φ = π/2.

155127-6



CORNER STATES OF TOPOLOGICAL FULLERENES PHYSICAL REVIEW B 88, 155127 (2013)

FIG. 8. (Color online) Eigenvalues of the icosahedron model as
a function of the second-neighbor hopping parameter amplitude |t2|.
In-gap states close to the valence band edge appear when |t2| is about
0.15 − 0.2. Phase of the second-neighbor hopping parameter is φ =
π/2, t = 1, and Ns = 320. Nondegenerate levels are colored black,
twofold-degenerate states red, threefold-degenerate states green, and
fourfold-degenerate states blue.

3. Tetrahedral nanosurfaces

Eventually, we also discuss the finite-size effects for
the tetrahedral systems where they appear to be strongest.
Figure 10 shows the dependence of the spectrum on |t2| for
Ns = 324. We find that a sizable second-neighbor hopping
amplitude of |t2| ∼ 0.2 is required to identify in-gap levels
appearing close to the conduction band. Figure 11 shows the
spectrum for various system sizes at fixed |t2| = 0.2. Only for
the largest system with Ns = 100 the corner states are more or
less well separated from the quasicontinuum of the remaining
states.

FIG. 9. Energy levels for the icosahedron as a function of system
size (80 to 500 sites). Occupied levels are indicated with a black dot,
assuming that exactly half of all states (bulk and corner) are occupied.
Parameters of the model are t1 = 1.0, |t2| = 0.2, and φ = π/2.

FIG. 10. (Color online) Eigenvalues of the tetrahedron model as
a function of the second-neighbor hopping parameter amplitude |t2|.
In-gap states close to the conduction band edge appear for |t2| ≈ 0.2.
Phase of the second-neighbor hopping parameter is φ = π/2, t = 1,
and Ns = 324. Nondegenerate levels are colored black, twofold-
degenerate states red, threefold-degenerate states green, and fourfold-
degenerate states blue.

V. SPLITTING OF CORNER LEVELS

A. Overview

The tight-binding calculations presented in the previous
section (Sec. II) demonstrated that if the bulk Hamiltonian is in
the Chern-insulator phase, the electronic spectra of sufficiently
large polyhedral nanosurfaces contain in-gap states which are
clearly separated from the quasicontinuum of the remaining
states. Furthermore, the number of in-gap states equals the
number of corners of the polyhedron. However, because of the
coupling between the corner states, the degeneracy is lifted
in a characteristic way, as summarized in Fig. 1. The goal of
this section is to better understand this corner-level splitting.
As will be discussed in the following, the splitting can be
understood by assigning a fixed chirality to the corner states.

In Sec. V B, we first study a general tight-binding model
for the corner states alone. We show that in order to obtain an

FIG. 11. Energy levels for the tetrahedron as a function of system
size (16 to 100 sites). Occupied levels are indicated with a black dot,
assuming that exactly half of all states (bulk and corner) are occupied.
Parameters of the model are t1 = 1.0, |t2| = 0.2, and φ = π/2.
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energy spectrum which is consistent with the observed lifting
of the degeneracy, two magnetic monopoles have to be placed
inside the polyhedron.

In Sec. V C, we relate this observation to the fact that the
corner states are eigenstates of the n-fold rotation operator
about an axis piercing the defect core. The angular momentum
of these states is given by the Chern number C. We then
argue that this leads to a nontrivial Berry phase contribution
which can be represented by magnetic monopoles inside the
polyhedra.

B. Effective model for corner states

To study the splitting of the energy levels of the corner
states, we first introduce a phenomenological model. The
model focuses on the nearest-neighbor hopping processes
between the corner states of the different Platonic solids
studied in this work:

Hcorner =
∑
〈i,j〉

(
teff
ij f

†
i fj + H.c.

)
. (13)

Here, the sum runs over nearest-neighbor pairs and the operator
f

†
i creates a corner state at the corner i. The hopping amplitude

between corner i and j is given by teff
ij . It turns out that in order

to reproduce the observed level splitting, it is crucial to allow
for the possibility that the faces of the polyhedra are threaded
by a magnetic flux. Therefore, we assume complex hopping
amplitudes:

teff
ij = |teff|eiaij . (14)

The total phase accumulated when hopping around a triangle
with corners i, j , and k (labeled in a right-handed way) is then
related to the flux through the triangle φijk by

aij + ajk + aki = 2π
φijk

φ0
, (15)

where, as before, φ0 is the quantum of flux. By symmetry,
we expect that the flux through each triangle is identical. This
requires a configuration with an integer number of magnetic
monopole quanta inside the solid. To model this situation, we
consider flux lines which enter the solid through one face and
then uniformly exit through the remaining faces, as illustrated
in Fig. 12(a) for the case of the tetrahedron.

Corner 
state

3φ

φ

Flux lines

φ

φ Magnetic 
monopole

Angular 
momentum

(a) (b) (c)

FIG. 12. (Color online) Illustration of different corner-state
models (here shown for the tetrahedron). (a) Tight-binding model
describing hopping between corner states in the presence of an
external magnetic flux. (b) If the fluxes through each triangle are equal
modulo φ0, an equivalent representation with a magnetic monopole
in the center of the polyhedron exists. (c) In the absence of external
fluxes, electrons can pick up the same complex phase from a Berry
phase term arising due to an internal angular momentum.

nΦ
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nΦ
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FIG. 13. (Color online) The energy spectrum of the corner tight-
binding model on the tetrahedron, octahedron and icosahedron as a
function of the number n	 of inserted magnetic monopoles (see main
text). The degeneracies for n	 = 2 are indicated in the plots.

Whenever the incoming flux is opposite equal to the
outgoing flux through one of the faces modulo φ0, such a
flux line configuration is indistinguishable from a magnetic
monopole in the center of the solid as shown in Fig. 12(b).
This condition is only satisfied if the flux through a single face
is given by

φijk = n	

φ0

F
mod φ0, (16)

where n	 is an integer and F denotes the number of
faces. Equation (16) is just Dirac’s quantization condition for
magnetic monopoles.

The energy spectra of the model (13) as a function of the
number n	 of elementary magnetic monopoles inserted into
the platonic solids are shown in Fig. 13. As described above,
for noninteger values of n	, the flux configuration does not
correspond to Fig. 12(b) but to 12(a) with an outward pointing
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flux φ given by Eq. (16). Clearly, without a magnetic monopole
(n	 = 0), the splitting and degeneracies are not consistent
with the numerical results of the full model shown in Fig. 4.
Instead, a closer inspection shows that the splitting for n	 = 2
is consistent for all the polyhedra, i.e., 1 + 3 for the tetrahedron,
3 + 3 for the octahedron, and 4 + 5 + 3 for the icosahedron.

The n	 = 2 magnetic monopole, which has to be placed
inside the solids to reproduce the observed energy splitting,
should not be confused with the fictitious flux φf given in
Eq. (5) (and which was also considered in the continuum
approximation to spherical fullerenes15,52). The fictitious flux
φf produces the corner states in the first place, while the
n	 = 2 monopole is required to properly describe the coupling
between the corner states.

C. Chiral corner states

What is the reason for the occurrence of the n	 = 2
monopole? In the following, we argue that this is a result
of the chiral nature of the corner states. Indeed, the analysis of
the continuum model for an isolated disclination33 shows that
the defect states carry a finite angular momentum Jz = C = ±1
with respect to the n-fold rotation axes through the center of
the n-gonal defect. On the polyhedral surfaces, the symmetry
axis of the Cn rotations point outward through the corners
of the polyhedron. Consequently, when the electrons hop
from corner to corner, the quantization axes changes as well.
As a result, if the electron hops around the triangle with
corners i, j , and k, it picks up a nontrivial Berry phase
given by

φijk = 
(ei ,ej ,ek) ∼ ei · (ej × ek), (17)

where 
(ei ,ej ,ek) is the solid angle subtended by the three
unit vectors pointing from the center of the polyhedron to the
three corners i, j , and k. This Berry phase can be represented
by a magnetic monopole with n	 = 2 [see Fig. 12(c)]. Note
that similar Berry phase contributions appear if an electron
propagates in the background of magnetic moments with
noncoplanar order.53 We present more details in the Appendix.

VI. CONCLUSIONS

In summary, we have studied Haldane’s honeycomb lattice
model on spherical nanosurfaces, namely, the tetrahedron,
the octahedron, and the icosahedron. For parameters which
correspond to the Chern-insulator phase in the infinite planar
model, we found that each corner of the polyhedron carries
a nontrivial bound state and we dubbed such molecules
topological fullerenes. In the energy spectrum, the corner
states show up as characteristic in-gap levels which are
clearly separated from the quasicontinuum of the remaining
levels. We related the occurrence of the corner states to the
existence of nontrivial defect states bound to isolated wedge
disclinations and discussed the lifting of the degeneracies
within an effective model for the corner states. The presented
example demonstrates that a two-dimensional nontrivial bulk
invariant can manifest itself in the energy spectrum of a closed
surface with no boundaries. While our findings are based on the
study of the Haldane model, we speculate that similar results
can be obtained in other models with odd Chern number,

such as the planar p-orbital model54 or a twisted version
of Haldane’s model.55 We also expect that our findings can
be generalized to models with time-reversal symmetry but
nontrivial Z2 invariant, such as the Kane-Mele model.3,4 In
this case, the in-gap modes would consist of Kramer’s doublets
and the bound states can exhibit the phenomena of spin-charge
separation.56–58

We now briefly comment on possible experimental real-
izations of time-reversal-invariant topological fullerenes. The
first approach is based on endohedral carbon fullerenes.59

Following the proposal to decorate graphene with 5d adatoms
to induce a large spin-orbit coupling,21 we suggest that the
icosahedron model could be realized by instead enclosing
5d transition-metal ions within the sphere of the fullerenes.
For the planar system, a nontrivial Z2 invariant has been
predicted (time-reversal symmetry is preserved).21 We there-
fore speculate that such a nontrivial bulk Z2 invariant would
give rise to nontrivial corner states. Using the estimate
�SO = 3

√
3|t2| = 200 meV for the spin-orbit induced gap21

and the value t = 2.7 eV for the nearest-neighbor hopping
in graphene yields a ratio t2/t ≈ 0.02. Relating this rough
estimate to the findings of Sec. IV C shows that in order
to overcome the finite-size effect, molecules should consist
of several hundred atoms. A second approach to topological
fullerenes would be the use of different materials with large
intrinsic spin-orbit coupling such as 2D bismuth or 2D tin.
Owing to the buckled nature of the honeycomb lattice realized
in these systems,22,24 it is conceivable that these materials
would prefer to form octahedral nanosurface (for which it
is possible to globally define two sublattices). According to
our calculations, finite-size effects are less pronounced for the
octahedral nanosurfaces and the corner states more likely to
be observed.
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APPENDIX: CONTINUUM DESCRIPTION

1. Rotations and wedge disclinations

The (planar) Haldane model (3) for � = 0 possesses a
sixfold rotation symmetry about the center of a hexagon. In
the following, we review how this symmetry is implemented
in the effective low-energy description given by the following
Dirac Hamiltonian:

HD = −iv(τzσx∂x + σy∂y) + mτzσz. (A1)

The Hamiltonian (A1) acts on a four-component spinor  =
(ψA,ψB,ψA′ ,ψB ′ ), �σ = (σx,σy,σz) are the Pauli matrices for
the sublattices (A-B), and �τ = (τx,τy,τz) for the valley (K-K ′)
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degree of freedom. The mass term m arises from a finite t2 in
the topologically nontrivial phase.

Because the Dirac equation (A1) is the low-energy limit of a
lattice model, spatial symmetries are realized differently than
for fundamental Dirac fermions.60 Indeed, translations and
rotations need to account for the finite lattice constant through
the valley quantum number. In particular, one can identify two
contributions to the rotation operator of physical rotations by
an angle α around the center of a hexagon:30,60

R(α) = Rlattice(α)RDirac(α). (A2)

Note that in the low-energy limit of Eq. (A1), a continuous
rotation symmetry emerges

R(α)†HDR(α) = HD (A3)

with arbitrary α. However, the restriction α = f π/3 with
f integer holds for physical rotations. Before providing the
explicit form of R(α), it is convenient to introduce a symmetry-
adapted basis with two new sets of Pauli matrices61

�� = (�x,�y,�z) = (σxτz,σy,σzτz), (A4)

�� = (�x,�y,�z) = (σyτx,τz, − σyτy). (A5)

�� denotes the (pseudo)spin- 1
2 degree of freedom arising from

the sublattice structure and �� are the generators of SU(2)
rotations in valley space. In this basis, the Hamiltonian (A1)
in Fourier space is simply

HD = vF (�xkx + �yky) + m�z (A6)

and [ ��,HD] = 0.
We now provide the explicit form of R(α). The first

contribution in Eq. (A2) is the well-known rotation operator
for fundamental Dirac spinors

RDirac(α) = ei α
2 (�z+2Lz), (A7)

where Lz = −i(x∂y − y∂x) is the z component of the orbital
angular momentum and �z = σzτz the z component of the
spin- 1

2 degree of freedom (associated here with the A-B
sublattices). Hence, the generator for RDirac is the sum of spin
and orbital momentum. Note that RDirac(2π ) = − which
would make the wave function double valued when rotated by
2π . The second contribution in Eq. (A2),

Rlattice(α) = ei 3α
2 �z, (A8)

arises from the underlying lattice theory and compensates this
minus sign. Indeed, Rlattice(2π ) = −, so that the spinor is
single valued under physical 2π rotations R(2π ) = . The
reason for the existence of Rlattice is the fact that the Dirac cones
are located at finite lattice momenta K and K ′. It essentially
accounts for the exchange of the valley and sublattice degrees
of freedom when a rotation by α = π/3 is performed.

This analysis motivates us to define the total angular
momentum as

�J = �L + 1
2
�� + 3

2
��. (A9)

Because [Jz,HD] = 0, we can choose an eigenbasis of HD

which simultaneously diagonalizes Jz.30,33 In this basis,
rotation by an angle α = f π/3 acts as

R(f π/3)(r,φ) = (τ i)f (r,φ + f π/3), (A10)

where (r,φ) are polar coordinates and τ = ±1 denotes the
chirality of :

�z(r,φ) = τ(r,φ). (A11)

According to Eq. (A10), for a wedge disclination, connecting
the wave function across the seam requires a nontrivial
boundary condition: the factor (τ i)f precisely yields the
fictitious flux Eq. (5).

2. Chiral defect states and Berry phase

The solution of the continuum model in the presence of a
disclination33 shows that the bound state satisfies

�z0 = −(2Lz + �z)0 = sign(C)0. (A12)

Thus, the defect states are eigenstates of Jz with eigenvalues
jz = sign(C).

On a polyhedral surface, the quantization axis points
outward through the corners of the polyhedron. When hopping
from corner to corner, the quantization axis has to be adjusted
which results in a nontrivial Berry phase. To calculate the
Berry phase contribution, we note first that for an isolated
disclination, the azimuthal part of the bound state with jz = 1
is simply eiϕ ∼ |px〉 + i|py〉. Next, we consider the surface of
the sphere and ask what is the overlap between two defect states
which are infinitesimally close to each other. We choose the
spherical coordinates such that the defect states have the same
altitude θ on the sphere but are separated along the eφ direction
by an infinitesimal amount �φ. In spherical coordinates, the
first orbital is

|ψ (1)〉 = 1√
2

[|p1(θ,φ)〉 + i|p2(θ,φ)〉]. (A13)

The second orbital is separated by �φ in the direction eφ from
the first orbital and is given by

|ψ (2)〉 = 1√
2

[|p1(θ,φ + �φ)〉 + i|p2(θ,φ + �φ)〉]

= (1 − i cos θ�φ)|ψ (1)〉 − i√
2

sin θ�φ|p3(θ,φ)〉.
(A14)

The effective hopping amplitude between the two states can
now be obtained from the overlap

teff
�φ = −t〈ψ (1)|ψ (2)〉 = −t(1 − i cos θ�φ) = −teiaφ�φ,

where the Berry connection is identified as aφ(θ,φ) = − cos θ .
Integrating along a closed path from φ = 0 to 2π yields a Berry
flux

	B = −2π cos θ mod 2π. (A15)

Hence, the Berry flux is identified with the solid angle enclosed
by the path of the electron on the sphere. For the hopping
between the corners of the polyhedron, this result implies that
each triangular face is pierced by a flux

	F = 4π/F. (A16)

This is precisely Eq. (16) with n	 = 2 (h̄ = 1).
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